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Summary
• Benchmark action-recognition models on 

corrupted video
• UCF101-P, HMDB51-P Kinetics-P, SSv2-P, 

UCF101-DS
• 90 Perturbations: Noise, Camera, 

Compression, Temporal, Blur
• Findings:

• Pre-trained typically more robust than 
scratch

• Robust to time for most datasets, but not 
robust when reversible actions possible.

• Transformer-based typically more robust
• CNN-based models typically more robust 

than transformer-based models when trained 
on corruptions 

UCF101-P
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Motivation
“How is performance impacted by 

a natural distribution shift?”

Curated

Simulated
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Perturbations
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Datasets 
• UCF101-P

• 101 action classes. 
• ~350K videos

• HMDB51-P
• 51 action classes 
• ~140K videos

• Kinetics400-P
• 400 action classes
• ~1.6M videos

• SSv2-P
• 174 action classes
• ~2.2M videos

Jumble UCF101-P JPEG Compression HMDB51-P

Defocus Blur Kinetics400-P Freeze SSv2-P
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UCF101-DS
• Real distribution shifts

• 4,708 clips
• 47 action classes from 

UCF101

• Keywords for query
• e.g. “bike riding+fog”

• Higher level categories
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UCF101-DS
• Real distribution shifts

• 4,708 clips
• 47 action classes from 

UCF101

• Keywords for query
• e.g. “bike riding+fog”

• Higher level categories
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Metrics and Evaluation

Relative Robustness
• Measures relative drop in 

accuracy
𝛾!,#$ = 1 − (𝐴%

& − 𝐴!,#
& )/𝐴%

&

Absolute Robustness
• Measures absolute drop in 

accuracy
𝛾!,#' = 1 − (𝐴%

& − 𝐴!,#
& )/100

• 𝑝: Perturbation
• 𝑠: Severity
• 𝐴!

": Accuracy on clean video
• 𝐴#,%

" : Accuracy on perturbed (𝑝) video at severity 𝑠
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Findings
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Overall Results
Pixel Noise Blur Compression Temporal Camera
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Pre-Training

SlowFast ResNet50 I3D X3D MViT

Spatio-Temp

Spatial Temporal

Scratch Pre-Trained

All

Mean Performance 
UCF101-P Pre-TrainedUCF101-P Scratch HMDB51-P Scratch HMDB51-P Pre-Trained

• Pre-training generally improves robustness
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• Robust on all 
datasets but SSv2

• Some SSv2 frames in 
reverse, become a 
different action
• CNN-based model 

confused more
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Training on Corruptions

• Helps on original data
Evaluation
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• Train foundational models on corruptions 
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• Helps on original data
• Helps more on CNN-based architecture

Evaluation
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• Train foundational models on corruptions 

Training on Corruptions
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Real Distribution Shifts: UCF101-DS
• Certain architectures more robust
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