

010

Contrastive Semi-supervised Learning for Underwater Image Restoration via Reliable Bank

Shirui Huang^{1,+}, Keyan Wang^{1,+,*}, Huan Liu², Jun Chen², Yunsong Li¹

*Equal Contributions, +Corresponding Author, 1. Xidian University, 2. McMaster University

THU-AM-159

Preview of Underwater Benchmarks

✤ Lack of real data: domain gap

Figure 1. Examples from different benchmarks.

Limited data size:

dataset	UIEB	ImageNet	COCO
Number	890	>14,000,000	200,000

Motivation – Semi-supervised Learning

Flowchart of SSL

Figure 2. Semi-supervised learning

Mean-teacher Framework

Figure 3. Framework of mean-teacher

The consistency loss used in training might become ineffective when the teacher's prediction is wrong
Using L1 distance may cause the network to overfit wrong labels, resulting in confirmation bias

Method – Semi-UIR

- Contributions:
 - 1) SSL framework improves the generalization of the trained model on real-world data
 - 2) Reliable bank stores best-ever teacher outputs and ensures the reliability of pseudo-labels
 - 3) Contrastive loss works as a regularization form to alleviate confirmation bias

Figure 4. Illustration of our framework Semi-UIR

Method – Reliable Teacher-student Consistency

Wrong pseudo labels can potentially jeopardize the training of the student network

Figure 5. Examples of unreliable consistency

$$\dot{L}_{un} = \sum_{i=0}^{M} \left| f_{\theta_s}(\phi_s(x_i^u) - y_i^b) \right|$$

Algorithm 1 Update of Reliable BankRequire: NR-IQA method $\Psi(\cdot)$;Initialize $\mathcal{B}_U = \emptyset$;Sample a batch of unlabeled images $\{x_i^u\}_{i=1}^b$ from D_U ;for each x_i^u doGet teacher's prediction: $\hat{y}_i^u = f_{\theta_t}(\phi_t(x_i^u))$;Get student prediction: $\tilde{y}_i^u = f_{\theta_s}(\phi_s(x_i^u))$;Compute NR-IQA scores of \hat{y}_i^u , \tilde{y}_i^u and $y_i^b \in \mathcal{B}_U$: $z_t = \Psi(\hat{y}_i^u), z_s = \Psi(\tilde{y}_i^u), z_b = \Psi(y_i^b)$;if $z_t > z_s$ and $z_t > z_p$ thenReplace the y_i^b in \mathcal{B}_U by \hat{y}_i^u ;end ifend for

Figure 6. Update of reliable bank

To address the issue, we propose a reliable bank to store the best-ever outputs of the teacher network during the training process

Method – Reliable Metric Selection

Empirical analysis

 $\alpha = 0.1$

Degraded image: *x* Clean image: *y*

Fusion coefficient: $\alpha_i = 1 \times i, i = 1, ..., 10$

Linear combination: $z_i = \alpha_i \times x + (1 - \alpha_i) \times y$

Figure 7. Exampes of image fusion based on different α

 $\alpha = 0.6$

 $\alpha = 0.3$

Monotonicity law

Figure 8. The results of seven non-reference IQA indicators on EUVP benchmark, **MUSIQ wins!**

An NR-IQA metric is identified as **reliable** if its score on z_i decreases with the increase of α

 $\alpha = 1.0$

Method – Contrastive Regularization

- ✤ To alleviate confirmation bias, we introduce contrastive loss in the training
- How to construct positive & negative pairs and feature space?

- $y_i^b \longrightarrow$ Positive sample, reliable label
- $\phi_s(x_i^u) \rightarrow$ Negative sampe, strongly augmented
- $y_i^u \longrightarrow$ Anchor, student's outpur
- **VGG-19** \rightarrow Feature space

Figure 9. Contrastive loss

Method – Underwater Restoration Network

- Certain prior information: illumination prior, gradient prior
- Two branches: illumination-aware restoration branch and gradient branch

Figure 10. Structure of AIM-Net

Experiments – Quantitative Results

Mathad	tes	stS	testR			
Method	PSNR ↑	SSIM↑	PSNR ↑	SSIM ↑		
Input	14.64	0.641	18.23	0.746		
GDCP [33]	12.89	0.576	15.78	0.757		
MMLE [53]	12.76	0.651	20.01	0.781		
WaterNet [22]	15.44	0.706	21.58	0.858		
Ucolor [20]	23.32	0.853	22.92	0.881		
PRWNet [16]	17.27	0.723	20.98	0.848		
FGAN [17]	18.54	0.743	19.41	0.824		
CWR [11]	14.79	0.697	21.87	0.815		
Semi-UIR	23.40	<u>0.821</u>	24.59	0.901		

Table 1. Quantitative results on full-reference datasets

Table 2. Quantitative results on four non-reference datasets

Mathad	UIQM (higher, better)			UCIQE (higher, better)			MUSIQ (higher, better)					
Wiethod	UIEB	EUVP	RUIE	Seathru	UIEB	EUVP	RUIE	Seathru	UIEB	EUVP	RUIE	Seathru
Input	3.066	4.729	3.948	5.925	0.509	0.517	0.490	0.537	41.70	42.73	33.53	60.25
GDCP [29]	3.401	4.738	4.509	5.343	0.564	0.599	0.565	0.590	40.07	42.49	34.63	60.54
MMLE [47]	4.283	4.723	4.967	5.555	<u>0.578</u>	0.596	<u>0.571</u>	0.620	<u>40.33</u>	47.55	36.80	<u>66.16</u>
WaterNet [19]	4.118	5.317	4.568	<u>6.829</u>	0.572	0.595	0.572	0.610	40.32	43.07	32.23	64.38
Ucolor [17]	3.894	5.286	4.426	6.752	0.542	0.566	0.534	0.594	40.08	41.81	33.66	64.44
PRWNet [13]	4.371	5.330	4.395	6.778	0.518	0.543	0.518	0.572	40.30	43.52	33.12	62.82
FGAN [14]	4.315	4.469	4.519	4.853	0.541	0.561	0.527	0.564	40.95	43.36	34.48	64.25
CWR [8]	4.133	5.152	4.469	6.067	0.587	0.596	0.565	0.624	38.46	41.46	31.25	64.21
Semi-UIR	4.598	5.291	<u>4.671</u>	6.846	0.587	0.593	0.557	0.632	43.77	51.66	37.87	66.61

Experiments – Qualitative Results

Figure 11. Qualitative Results

Experiments – Influence of innovation points

Breakdown of training

Figure 12. Examples of intermediate predictions

✤ Non-reference Metric

	NIQE	NIMA	UCIQE	BRISQUE	UIQM	PAQ2PIQ	MUSIQ	
Reliability	13.45%	41.05%	48.16%	48.69%	76.87%	82.11%	91.21%	
testS	22.83/0.811	23.01/0.815	22.90/0.813	23.15/0.820	23.24/0.820	23.08/0.818	23.40/0.821	
testR	22.98/0.887	23.88/0.888	23.64/0.890	24.00/0.900	23.80/0.897	24.28/0.893	24.59/0.901	

Table4. Evaluation of adopting different NR-IQA metrics

Data Augmentation

Table3. Evaluation of using different data augmentation

Strategy	testR	UIEB	EUVP	RUIE	Seathru
Baseline	0.880	40.12	46.06	31.14	64.71
Color Jitter	0.889	40.31	49.16	33.66	64.87
Gaussian Blur	0.896	41.23	49.27	36.88	64.88
Gray Scale	0.895	40.61	47.57	32.51	65.19
All	0.901	43.77	51.66	37.87	66.61

Thank you!

