

Efficient Scale-Invariant Generator with Column-Row Entangled Pixel Synthesis

Thuan Hoang Nguyen*

Thanh Van Le*

Anh Tran

*Equal contribution

Poster: THU-PM-172

- > Traditional image generators are trained for a fixed resolution
- Cannot generate images at higher resolution

1024 x 1024

256 x 256

- We focus on the task of any-scale synthesis
- > Once trained, the model can generate images at arbitrary scales.

「小型」(Alin Ai

- This task has been gaining attention recently
- > However, previous works are either:

Inconsistent

Slow

- > Whereas, CREPS is
 - **Efficient** as previous generators like StyleGAN2.
 - Scale-invariant regardless the output resolution.
 - Able to generalize to unseen geometric transformations.

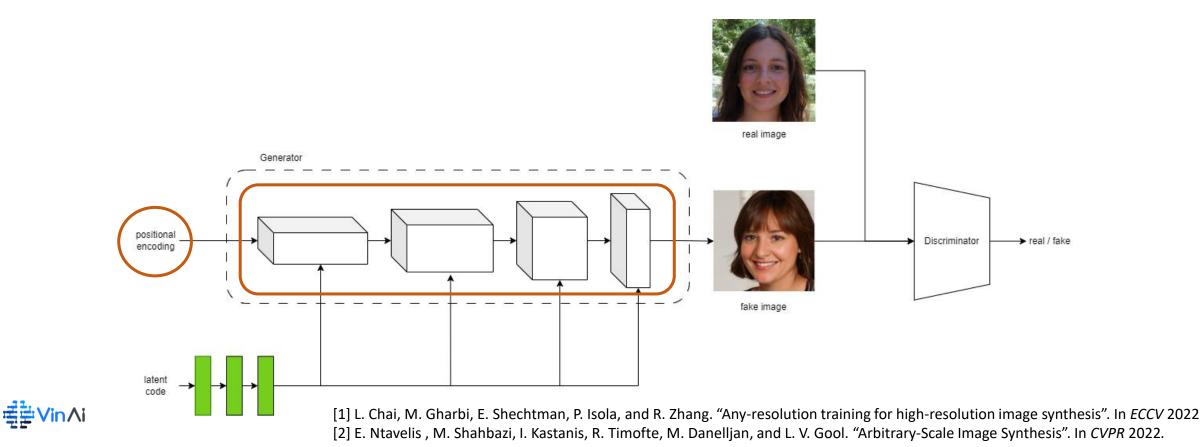
VinAl 6 Corporate Presentation

Any-scale Image Synthesis

Same latent input **z**

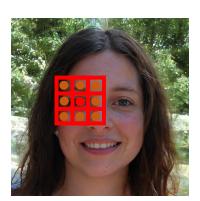
Previous works (1)

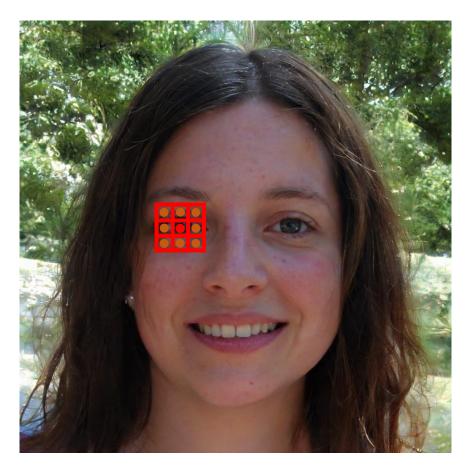
- AnyresGAN [1] and ScaleParty [2]
 - Traditional "fixed-size" generators & introduce non-trivial re-design



Previous works (1)

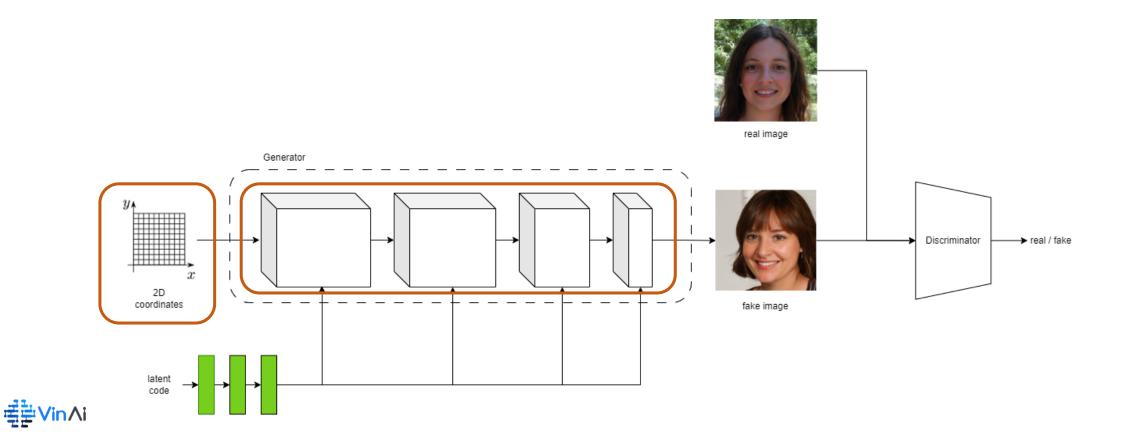
- AnyresGAN [1] and ScaleParty [2]
 - Rely on scale-inconsistent operators (upsampling, spatial conv...)





Previous works (2)

- ➢ INR-GAN [3] and CIPS [4]
 - Utilize spatial-invariance of implicit neural representation.



Previous works (2)

➢ INR-GAN [3] and CIPS [4]

「雪⊒Vin∧i

• Slow and much more memory-consuming other GAN counterparts

Resolution	Batch size	Memory Usage			Running time		
		StyleGAN2	CIPS	Ours	StyleGAN2	CIPS	Ours
256×256	1	1.5GB	3.3GB	2.3GB	0.04s	0.06s	0.03s
	4	2.5GB	10.2GB	5.2GB	0.05s	0.23s	0.06s
512×512	1	1.7GB	10.4GB	4.5GB	0.04s	0.21s	0.05s
	4	3.4GB	OOM	14.6GB	0.06s	OOM	0.16s

[3] I. Skorokhodov, S. Ignatyev, and M. Elhoseiny. "Adversarial generation of continuous images". In CVPR 2021.

[4] I. Anokhin, K. Demochkin, T. Khakhulin, G. Sterkin, V. Lempitsky, and D. Korzhenkov. "Image generators with conditionally-independent pixel synthesis". In CVPR 2021.

Column-Row Entangled Pixel Synthesis

Therefore, in this work, we present Column-Row Entangled Pixel Synthesis (CREPS) with three criteria in mind:

Efficiency

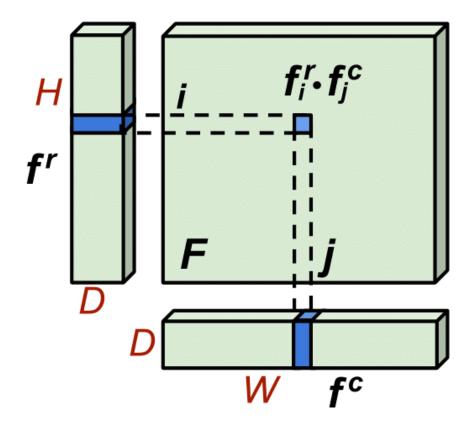
Spatial-Consistency

High-quality

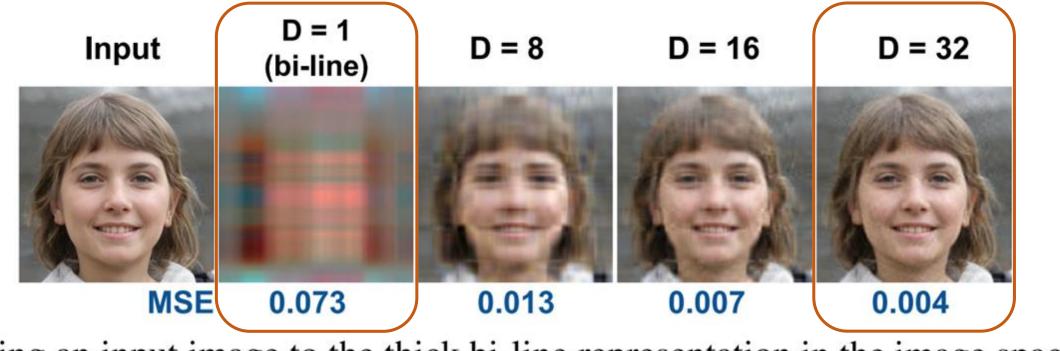
Bi-line Representation

Decompose a **2D** feature into **row and column embeddings**:

- Add "thickness" D to increase representation power
- Compose back to 2D feature via dot product



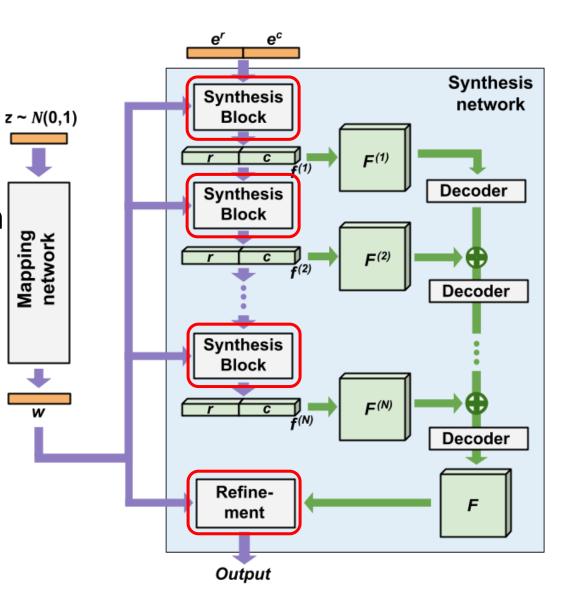
Bi-line Representation



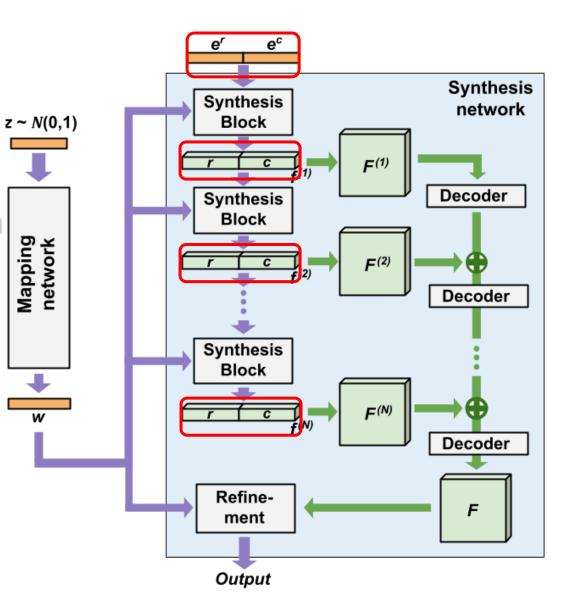
Fitting an input image to the thick bi-line representation in the image space.

On the right is our architecture based on StyleGAN2, with three notable features:

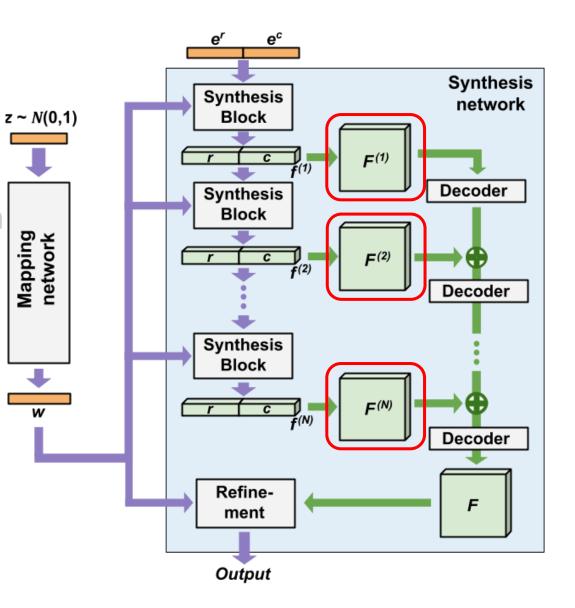
 Upsampling and 3x3 convolution removal



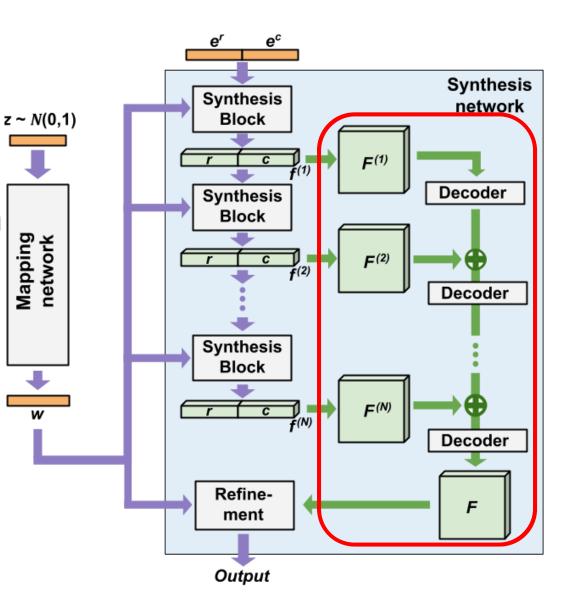
- Upsampling and 3x3 convolution removal
- Bi-line decomposition



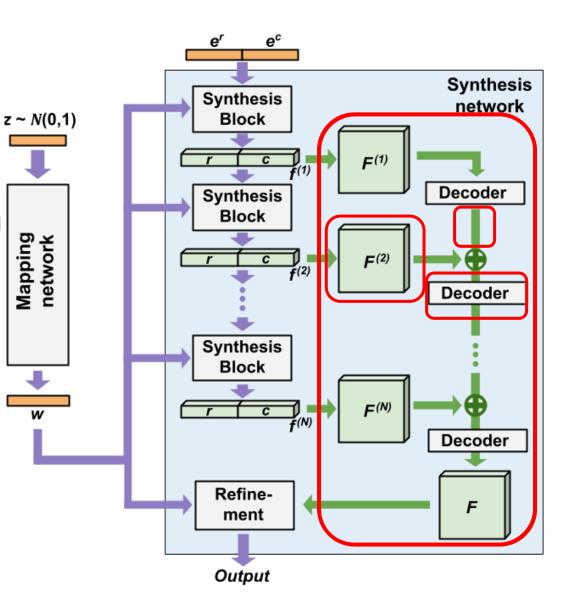
- Upsampling and 3x3 convolution removal
- Bi-line decomposition



- Upsampling and 3x3 convolution removal
- Bi-line decomposition
- Layer-wise feature composition



- Upsampling and 3x3 convolution removal
- Bi-line decomposition
- Layer-wise feature composition



Experiments

Image Generation

Generator	FFHQ-512	FFHQ-1024	LSUN Church - 256	Metfaces-1024	Scenery-256
StyleGAN2	3.41	2.84	<u>3.86</u>	18.22	6.40
CIPS	6.18	10.07	2.92	OOM	8.49
Ours	<u>4.43</u>	<u>4.09</u>	5.50	<u>20.52</u>	<u>7.21</u>

VinAl 20 Corporate Presentation

Experiments

Image Generation

FFHQ

Metfaces

LSUN-Church

Experiments

Scale consistency

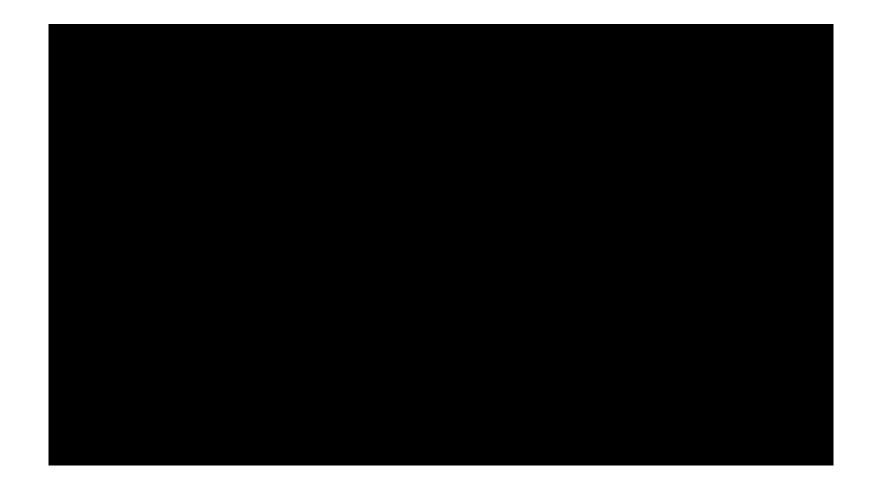
- Compare two sets:
 - 1. 256x256 images
 - 2. 512x512 images + down-sampled to 256x256

	PSNR 个	SSIM ↑	LPIPS↓
AnyresGAN	24.19	0.73	0.07
ScaleParty	24.50	0.70	0.08
CIPS	<u>33.33</u>	<u>0.93</u>	<u>0.05</u>
Ours	34.65	0.96	0.01

VinAl 22 Corporate Presentation

Experiments

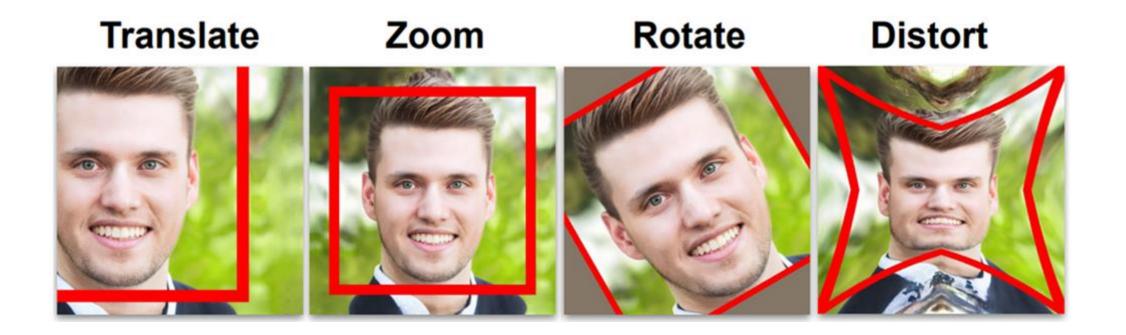
Scale consistency



VinAl 23 Corporate Presentation

Experiments

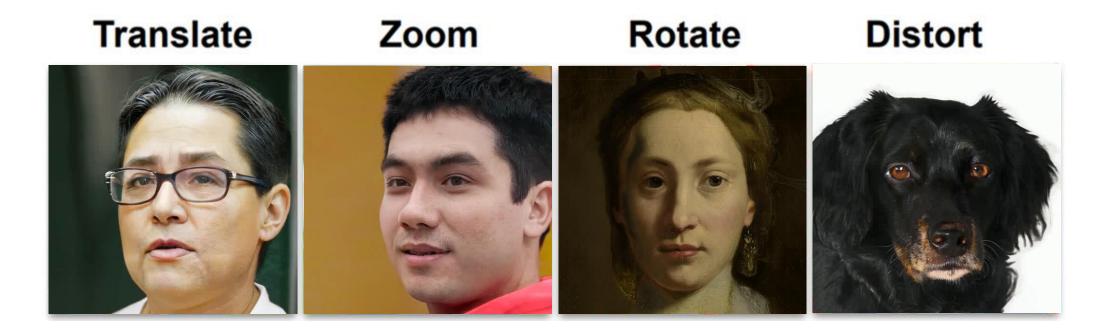
Geometric transformation



VinAl 24 Corporate Presentation

Experiments

Geometric transformation



VinAl 25 Corporate Presentation

Experiments

- Generate an image of size 3687 × 3687 in a single run
- Generate an image at any size with patch-based approach

Limitation

There are common artifacts occurring in our samples:

VinAl 26 Corporate Presentation

THANK YOU

Project Page thuanz123.github.io/creps/

Github github.com/VinAIResearch/CREPS/