Poster session: TUE-AM-268

Reproducible Scaling Laws for Contrastive Language-Image Learning

Mehdi Cherti^{1,5} §§ Romain Beaumont¹ §§ Ross Wightman^{1,3} §§ Mitchell Wortsman⁴ §§ Gabriel Ilharco⁴ §§ Cade Gordon² Christoph Schuhmann¹ Ludwig Schmidt⁴ ^{°°} Jenia Jitsev^{1,5} §§^{°°} LAION¹ UC Berkeley² HuggingFace³ University of Washington⁴ Juelich Supercomputing Center (JSC), Research Center Juelich (FZJ)⁵

Hugging Face

Overview

We study CLIP (Radford et al., 2021) scaling laws:

- Based openly available data (LAION-400M,2B)
- Using open source software (OpenCLIP)

Evaluation:

- Zero-shot classification & retrieval, linear probing, fine-tuning.

Our Findings:

- Improvement on downstream tasks with scale, following a power-law
- Bottlenecks with small data scale/samples seen
- Task specific scaling laws: advantage of OpenCLIP LAION over OpenAI's CLIP on retrieval, advantage of OpenAI's CLIP on classification

We open source code, full checkpoints and training/eval workflow

Background: neural scaling laws

Why scaling laws?

- Extrapolate model performance on larger scale
- Compute optimal model size for a given compute budget
- Compare scaling curves of different architectures/pre-training datasets/losses

Scaling laws for contrastive language-image training

Existing works on contrastive language-image training:

- Show benefit of scaling but do not study it systematically
- Rely on private datasets
- Usually involve a customized training procedure

Pre-training data

We use the open & large LAION-5B dataset

- Data scales: 80M, 400M, 2B
- Samples seen (compute): 3B, 13B, 34B

Metal Print

Hipster cat

笑到岔氣之後我也手

Model sizes

We use models ranging from ~150M to ~1.4B parameters

Name	\mathbf{Width}	Emb.	\mathbf{Depth}	Acts.	Params	GMAC
ViT-B/32	$768 \ / \ 512$	512	12 / 12	10 M	151 M	7.40
ViT-B/16	$768 \ / \ 512$	512	12 / 12	$29 \mathrm{M}$	$150 \mathrm{M}$	20.57
ViT-L/14	$1024 \ / \ 768$	768	24 / 12	$97 {\rm M}$	$428 \mathrm{M}$	87.73
ViT-H/14	1280 / 1024	1024	32 / 24	161 M	986 M	190.97
ViT-g/14	$1408 \ / \ 1024$	1024	40 / 24	$214~{\rm M}$	$1.37 \mathrm{~B}$	290.74

Downstream datasets

Dataset	Abbr.	Test size	#Classes
ImageNet	INet	50,000	1,000
ImageNet-v2	INet-v2	10,000	1,000
ImageNet-R	INet-R	30,000	200
ImageNet Sketch	INet-S	50,889	1,000
ObjectNet	ObjNet	18,574	113
ImageNet-A	INet-A	7,500	200
CIFAR-10		10,000	10
CIFAR-100	-	10,000	100
MNIST	(4)	10,000	10
Oxford Flowers 102	Flowers102	6,149	102
Stanford Cars	Cars	8,041	196
SVHN	-	26,032	10
Facial Emotion Recognition 2013	FER2013	7,178	7
RenderedSST2	-	1,821	2
Oxford-IIIT Pets	Pets	3,669	37
Caltech-101	-	6,085	102
Pascal VOC 2007 Classification	VOC2007-Cl	14,976	20
SUN397	-	108,754	397
FGVC Aircraft	1.00	3,333	100
Country211	-	21,100	211
Describable Textures	DTD	1,880	47
GTSRB	-	12,630	43
STL10	-	8,000	10
Diabetic Retinopathy	Retino	42,670	5
EuroSAT	1 	5,400	10
RESISC45	-	6,300	45
PatchCamelyon	PCAM	32,768	2
CLEVR Counts	-	15,000	8
CLEVR Object Distance	CLEVR Dist	15,000	6
DSPRITES Orientation	DSPRITES Orient	73,728	40
DSPRITES Position	DSPRITES pos	73,728	32
SmallNORB Elevation	SmallNORB Elv	12,150	9
SmallNORB Azimuth	SmallNORB Azim	12,150	18
DMLAB	-	22,735	6
KITTI closest vehicle distance	KITTI Dist	711	4
MS-COCO	-	5,000	-
Flickr30K		1,000	-

We evaluate the models on :

- Zero-shot classification
- Few-shot and full- shot linear probing
- Fine-tuning
- Zero-shot retrieval (COCO, FLickr-30K)

Table 25: Datasets used for evaluating downstream performance. Adapted from [65].

Evaluation: zero-shot classification

 $E~=~eta C^{lpha}$,where E is error rate (downstream), C is total compute (GMAC)

ImageNet

ImageNet robustness

Evaluation: zero-shot classification, bottlenecks

Data scale bottleneck

Samples seen bottleneck

Evaluation: zero-shot retrieval

COCO

Task-specific scaling laws

Zero-shot classification (ImageNet)

Zero-shot retrieval (COCO)

Evaluation: linear probing

ImageNet

Evaluation: fine-tuning

	ImageNet-1k top-1 accuracy (%)		
Model	No extra FT	Extra FT (ImageNet-12k)	
ViT-B/32	82.58	85.11	
ViT-B/16	86.53	87.17	
ViT-L/14	87.78	88.17	
ViT-H/14	87.59	88.50	

Scaling curves for performance prediction

Model	ImageNet top-1 (%)	MS-COCO Recall@5 (%)
H/14 (3B)	70.78	67.58
g/14~(3B)	72.11	68.65
G/14 (3B)	73.93	70.12
H/14 (13B)	75.62	71.52
g/14~(13B)	76.66 *	72.40 *
G/14 (13B)	78.26	73.75
H/14 (34B)	77.97 *	73.43 *
g/14~(34B)	79.11	74.48
G/14 (34B)	80.47	75.68
H/14 (68B)	79.73	75.03
g/14~(68B)	80.66	75.85
G/14~(68B)	81.92	76.99

(*): actual measured model performance values

Thank you!

https://github.com/LAION-AI/scaling-laws-openclip