





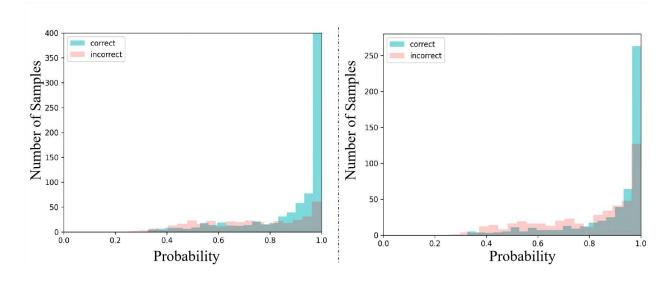

# PEFAT: Boosting Semi-supervised Medical Image Classification via Pseudo-loss Estimation and Feature Adversarial Training

Qingjie Zeng<sup>1\*</sup> Yutong Xie<sup>2\*</sup> Zilin Lu<sup>1</sup> Yong Xia<sup>1†</sup>

<sup>1</sup> School of Computer Science and Engineering, Northwestern Polytechnical University, China <sup>2</sup> The University of Adelaide, Australia

Poster Session WED-PM CVPR 2023 Highlight





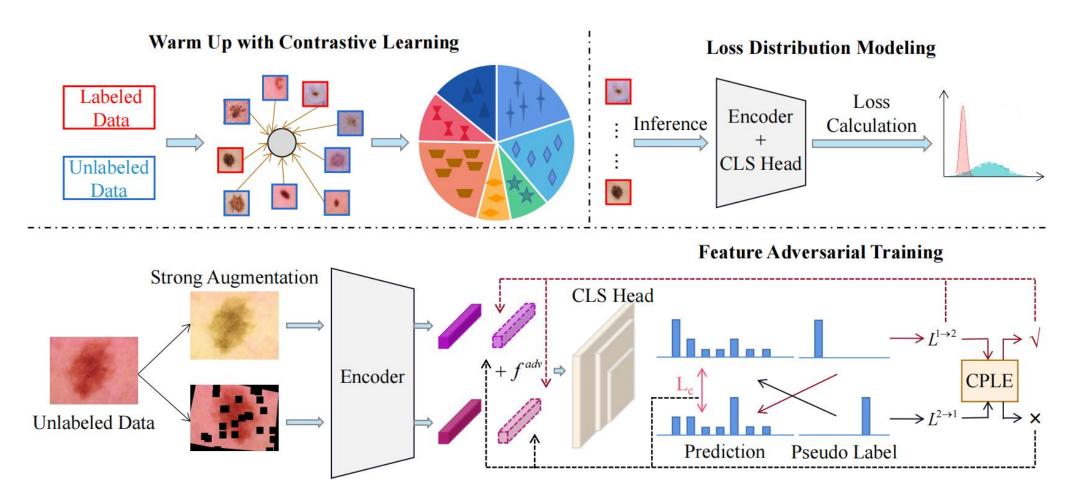





# Observation

Correct and incorrect pseudo-labeled data follow the similar probability distribution




Probability distribution on labeled data

Probability distribution on validation data



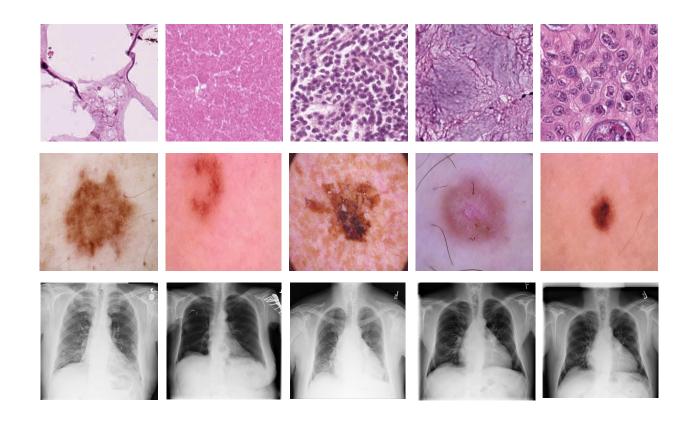
Miyato T, Maeda S, Koyama M, et al. Virtual adversarial training: a regularization method for supervised and semi-supervised learning[J]. TPAMI 2018, 41(8): 1979-1993. Arazo E, Ortego D, Albert P, et al. Unsupervised label noise modeling and loss correction. In: ICML. PMLR, 2019: 312-321.

## Method



**Step one**: warm up the model using whole training data.

Step two: build loss prior on labeled data with Gaussian Mixture Model (GMM).


**Step three**: collect high-quality pseudo-labeled data using fitted GMM and cross pseudo-loss, meanwhile making predictions consistent after injecting feature-level adversarial noise

#### **Datasets**

- 1. NCT-CRC-HE (100,000 colorectal cancer histology slides, 9 classes), setting: 100/200 labeled data
- 2. ISIC2018 (10,015 skin lesion dermoscopy images, 7 classes), setting: 5%/20% labeled data
- 3. Chest X-Ray14 (112,120 chest x-rays from 30805 patients, 14 classes), setting: 2%/5%/10%/15%/20% labeled data

#### **Evaluation Mertics**

- 1. AUC
- 2. Accuracy
- 3. Specificity
- 4. Sensitivity
- 5. F1-score



# Results

Table 1. Performance comparison with other state-of-the-art SSL methods on NCT-CRC-HE dataset. "SENS", "PREC" and "ACC" are Sensitivity, Precision and Accuracy, respectively. We list the evaluation metrics when 100 and 200 labeled data are given. Best and second best results are shown in **bold** and <u>underline</u>, respectively.

| Method        | NCT-CRC-HE (200 labeled data) |       |       |       | NCT-CRC-HE (100 labeled data) |       |       |       |       |       |
|---------------|-------------------------------|-------|-------|-------|-------------------------------|-------|-------|-------|-------|-------|
|               | AUC                           | SENS  | PREC  | ACC   | F1                            | AUC   | SENS  | PREC  | ACC   | F1    |
| Baseline      | 97.86                         | 78.12 | 83.06 | 80.63 | 76.31                         | 96.48 | 73.85 | 76.25 | 73.29 | 73.48 |
| MT [33]       | 98.07                         | 81.89 | 83.91 | 81.55 | 81.19                         | 97.15 | 77.51 | 78.81 | 77.97 | 77.07 |
| FixMatch [32] | 98.43                         | 85.03 | 84.75 | 84.81 | 84.66                         | 97.91 | 80.59 | 81.78 | 80.47 | 80.28 |
| SimPLE [14]   | 98.57                         | 85.80 | 85.56 | 85.59 | 85.48                         | 98.01 | 83.37 | 83.46 | 82.72 | 82.91 |
| CoMatch [20]  | 98.83                         | 87.94 | 88.70 | 86.48 | 86.24                         | 98.00 | 84.72 | 84.58 | 83.93 | 84.11 |
| SimMatch [41] | 99.02                         | 88.19 | 88.36 | 88.31 | 87.98                         | 98.03 | 85.07 | 84.50 | 84.24 | 84.43 |
| Ours          | 99.08                         | 89.68 | 91.18 | 90.29 | 90.12                         | 98.25 | 86.82 | 86.78 | 86.01 | 86.33 |

Table 2. Performance comparison on ISIC2018 dataset. "SENS", "SPCE" and "ACC" stand for Sensitivity, Specificity and Accuracy, respectively. Evaluation metrics are reported with the percentage of 5% and 20% labeled data. Best and second best results are shown in **bold** and <u>underline</u>, respectively.

| Method        | ISIC2018 (20% labeled data) |       |       |       | ISIC2018 (5% labeled data) |       |       |       |       |       |
|---------------|-----------------------------|-------|-------|-------|----------------------------|-------|-------|-------|-------|-------|
|               | AUC                         | SENS  | SPEC  | ACC   | F1                         | AUC   | SENS  | SPEC  | ACC   | F1    |
| Baseline      | 90.90                       | 69.37 | 91.77 | 91.42 | 51.89                      | 84.28 | 56.32 | 87.53 | 85.36 | 40.96 |
| SRC-MT [24]   | 93.58                       | 71.47 | 92.72 | 92.54 | 60.68                      | 87.61 | 62.04 | 89.36 | 88.77 | 46.26 |
| $DS^{3}L[11]$ | 93.85                       | 70.33 | 92.29 | 92.53 | 61.08                      | 85.08 | 58.82 | 89.52 | 89.27 | 44.19 |
| ACPL [22]     | 94.36                       | 72.14 | -     | -     | 62.23                      | -     | -     | -     | -     | -     |
| RAC-MT [12]   | 94.42                       | 73.41 | 92.68 | 93.27 | 63.95                      | 87.92 | 59.34 | 90.51 | 91.11 | 48.54 |
| Ours          | 94.87                       | 76.72 | 93.45 | 93.68 | 66.15                      | 88.64 | 64.10 | 91.25 | 91.81 | 50.96 |

Table 3. Performance of mean AUC on Chest X-Ray14 dataset under the label percentage of 2%, 5%, 10%, 15% and 20%. Note that \* denotes the methods employee DenseNet-169 as backbone with  $384 \times 384$  input size, † means the methods use DenseNet-121 as backbone with  $512 \times 512$  input size.

| Method                   | Label Percentage |       |       |       |       |  |  |
|--------------------------|------------------|-------|-------|-------|-------|--|--|
| Wiemod                   | 2%               | 5%    | 10%   | 15%   | 20%   |  |  |
| Graph XNet* [3]          | 53.00            | 58.00 | 63.00 | 68.00 | 78.00 |  |  |
| SRC-MT* [24]             | 66.95            | 72.29 | 75.28 | 77.76 | 79.23 |  |  |
| UPS [29]                 | 65.51            | 73.18 | 76.84 | 78.90 | 79.92 |  |  |
| NoTeacher [34]           | 72.60            | 77.04 | 77.61 | -     | 79.49 |  |  |
| $S^2MTS^{2\dagger}$ [23] | 74.69            | 78.96 | 79.90 | 80.31 | 81.06 |  |  |
| $ACPL^{\dagger}$ [22]    | 74.82            | 79.20 | 80.40 | 81.06 | 81.77 |  |  |
| Ours                     | 75.06            | 79.54 | 80.93 | 81.56 | 82.58 |  |  |

# Ablation and Analysis

Table 4. Ablation study of each module in PEFAT on NCT-CRC-HE dataset. Results are reported in the case of 100 labeled data. \* and † denote singly employing FAT on the selected and unselected pseudo-labeled data, respectively.

| Method                | AUC   | SENS  | PREC  | ACC   | F1    |
|-----------------------|-------|-------|-------|-------|-------|
| Baseline              | 96.48 | 73.85 | 76.25 | 73.29 | 73.48 |
| CPLE                  | 98.09 | 84.57 | 83.89 | 84.16 | 84.65 |
| CPLE+VAT              | 98.13 | 85.00 | 84.14 | 84.34 | 84.79 |
| CPLE+FAT*             | 98.15 | 85.10 | 84.66 | 84.42 | 84.70 |
| CPLE+FAT <sup>†</sup> | 98.18 | 85.91 | 85.76 | 85.65 | 85.73 |
| CPLE+FAT              | 98.25 | 86.82 | 86.78 | 86.01 | 86.33 |

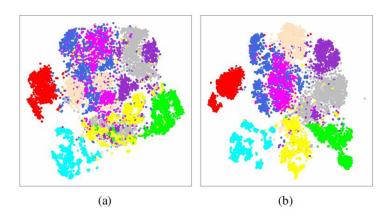



Figure 4. The t-SNE visualization on NCT-CRC-HE validation set. (a) is the result when using VAT; (b) shows the feature embedding when using FAT.

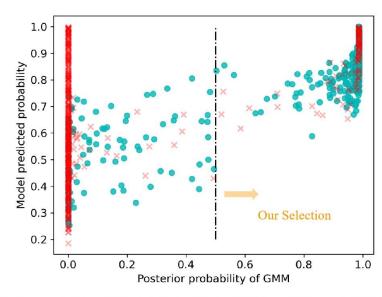



Figure 5. The relation between model predicted probability and posterior probability of GMM. Red  $\times$  and Turquoise  $\bullet$  denote unlabeled data with incorrect and correct pseudo-labels.

Table 5. Experiments conducted on NCT-CRC-HE validation set.  $\delta = K$  means using probability threshold K to select pseudo-labeled samples. Ratio = Correct / Selected.

| Method         | Sel       | ected       | Unselected ↓ | Ratio ↑ |  |
|----------------|-----------|-------------|--------------|---------|--|
| 111011100      | Correct ↑ | Incorrect ↓ | onserved y   |         |  |
| δ=0.80         | 3821      | 531         | 5648         | 87.80   |  |
| $\delta$ =0.85 | 3172      | 394         | 6434         | 88.95   |  |
| $\delta$ =0.90 | 2387      | 257         | 7356         | 90.28   |  |
| $\delta$ =0.95 | 1184      | 112         | 8704         | 91.36   |  |
| <b>CPLE</b>    | 6490      | 592         | 2918         | 91.64   |  |