Deep Random Projector: Accelerated Deep Image Prior (THU-AM-162)

Taihui Li¹, Hengkang Wang¹, Zhong Zhuang², Ju Sun¹

¹Computer Science and Engineering, University of Minnesota ²Electrical and Computer Engineering, University of Minnesota

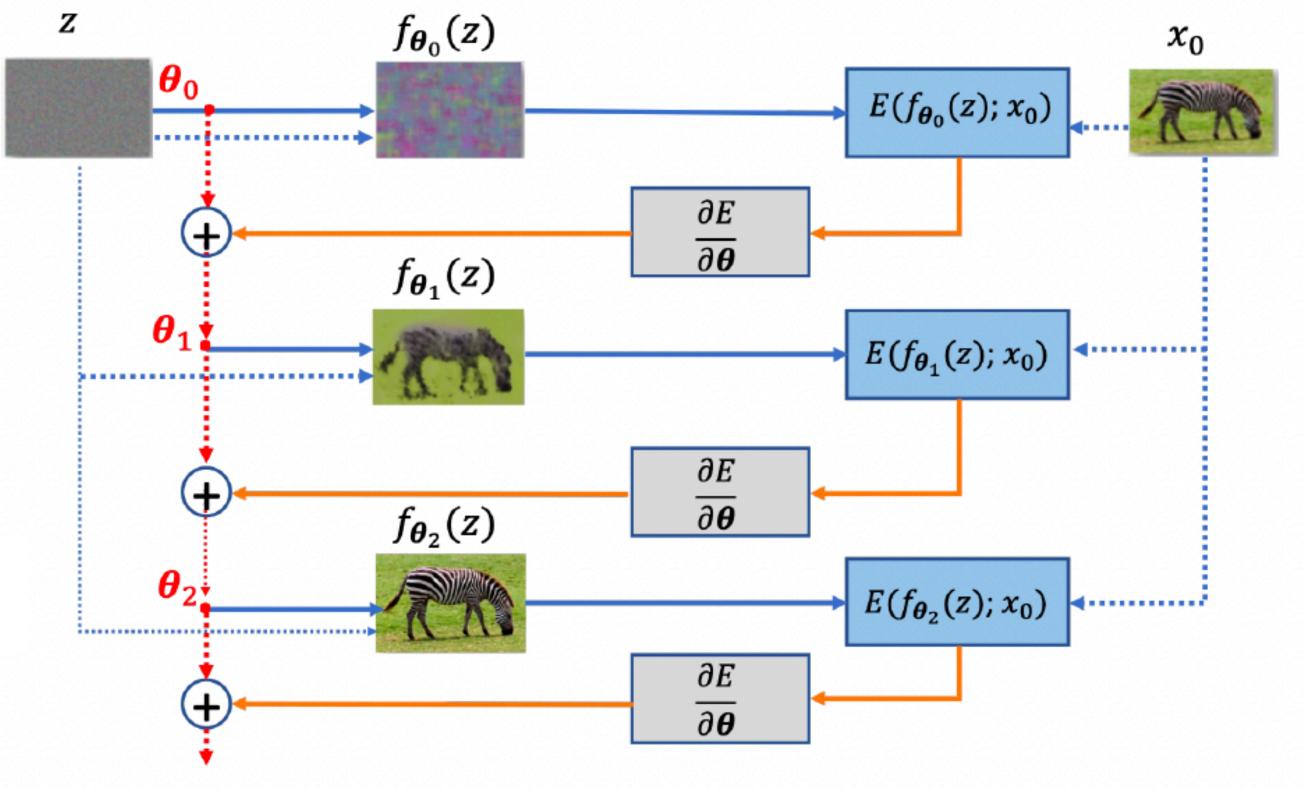
Deep Image Prior

Deep image prior (DIP):

$$\mathbf{x} \approx G_{\theta}(\mathbf{z})$$

Objective function:

 $\min_{ heta} \, \ell(\mathbf{y}, \, f \circ G_{ heta}(\mathbf{z})) \, + \, \lambda R \circ G_{ heta}(\mathbf{z})$



Credit to [1].

Deep Image Prior Is Good At...

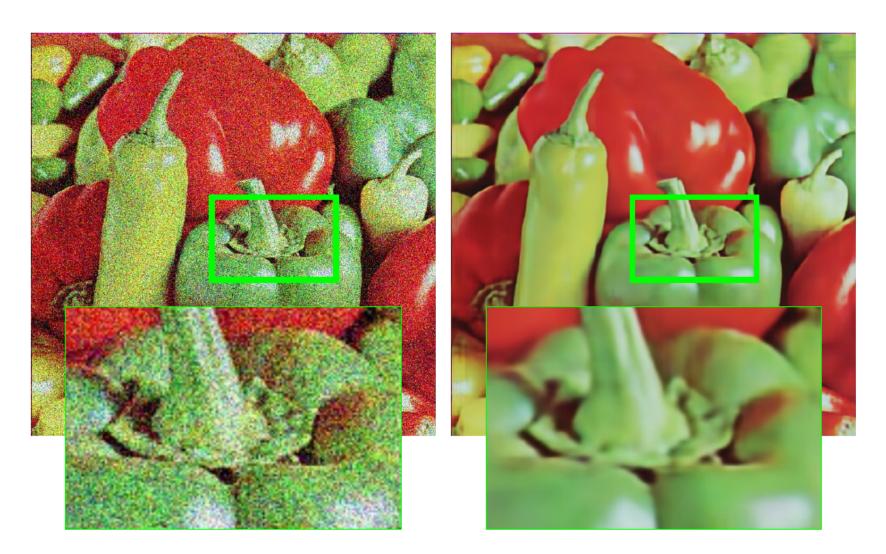
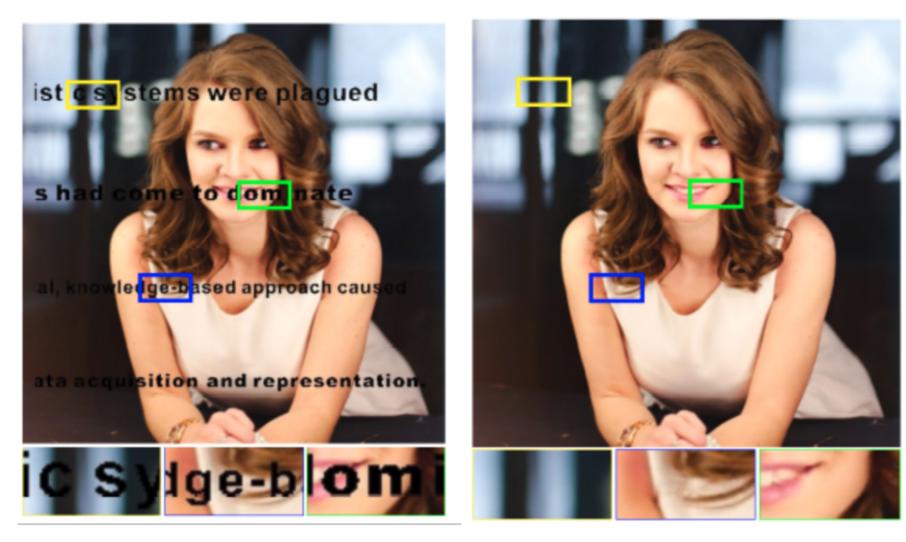


Image denoising



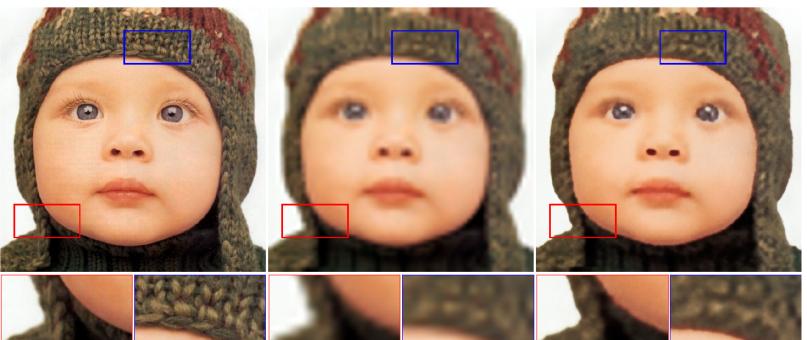


Image super-resolution

Image inpainting

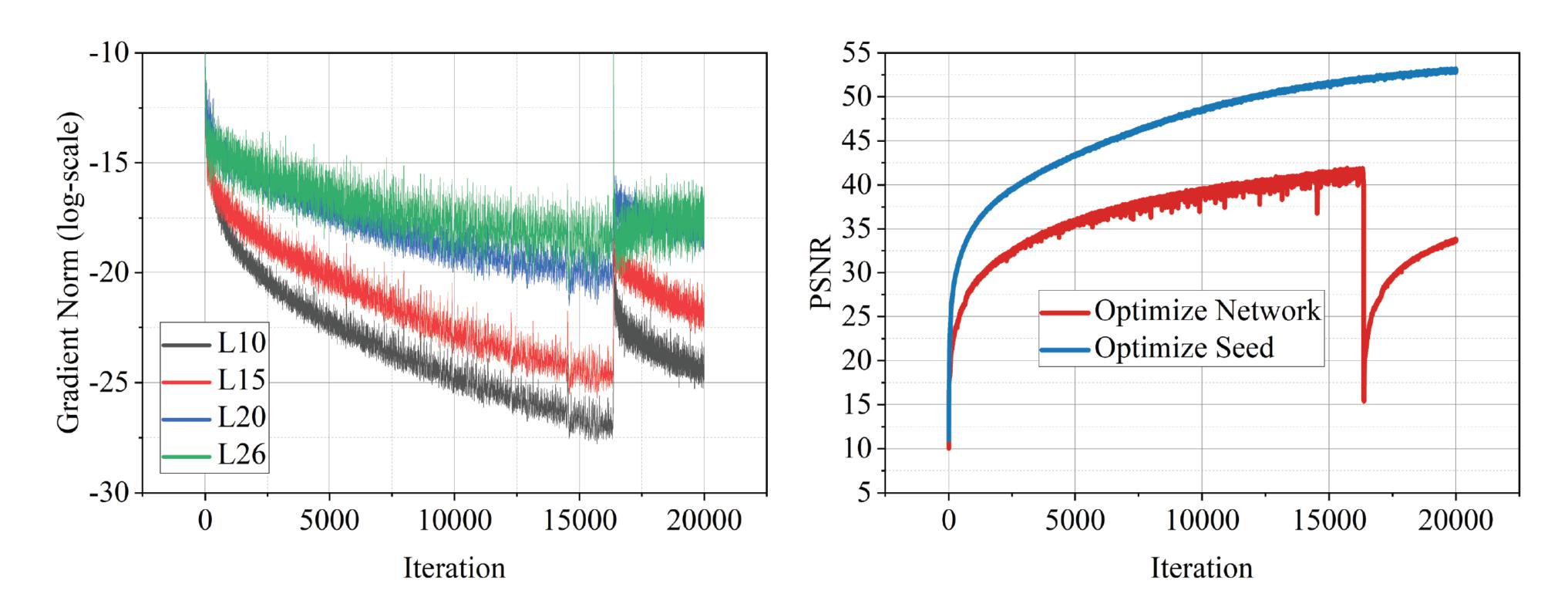
All figures are credited to [1].

Deep Image Prior Suffers From...

- Overfitting to noise
- Slowness in optimization

Optimizing the input seed, not the network \rightarrow improve the convergence

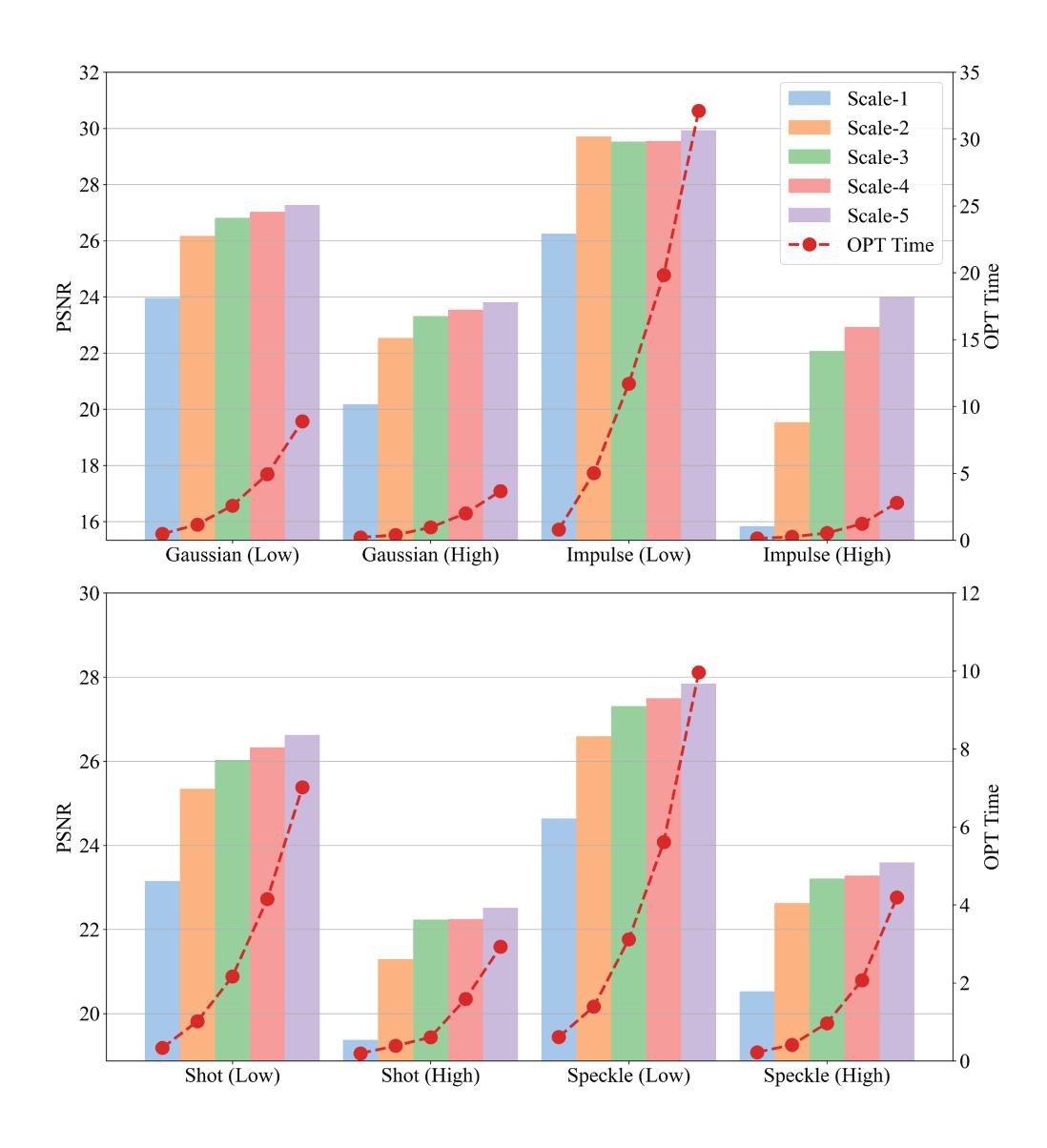
 $\min_{\theta} \, \ell(\mathbf{y}, \, f \circ G_{\theta}(\mathbf{z})) \qquad \qquad \blacktriangleright \ \min_{\mathbf{z}} \, \ell(\mathbf{y}, f \circ G_{\theta}(\mathbf{z}))$



Key(s) to Accelerating Optimization

Cutting down the network depth:

- 1) improve per-iteration cost
- 2) speed up the convergence

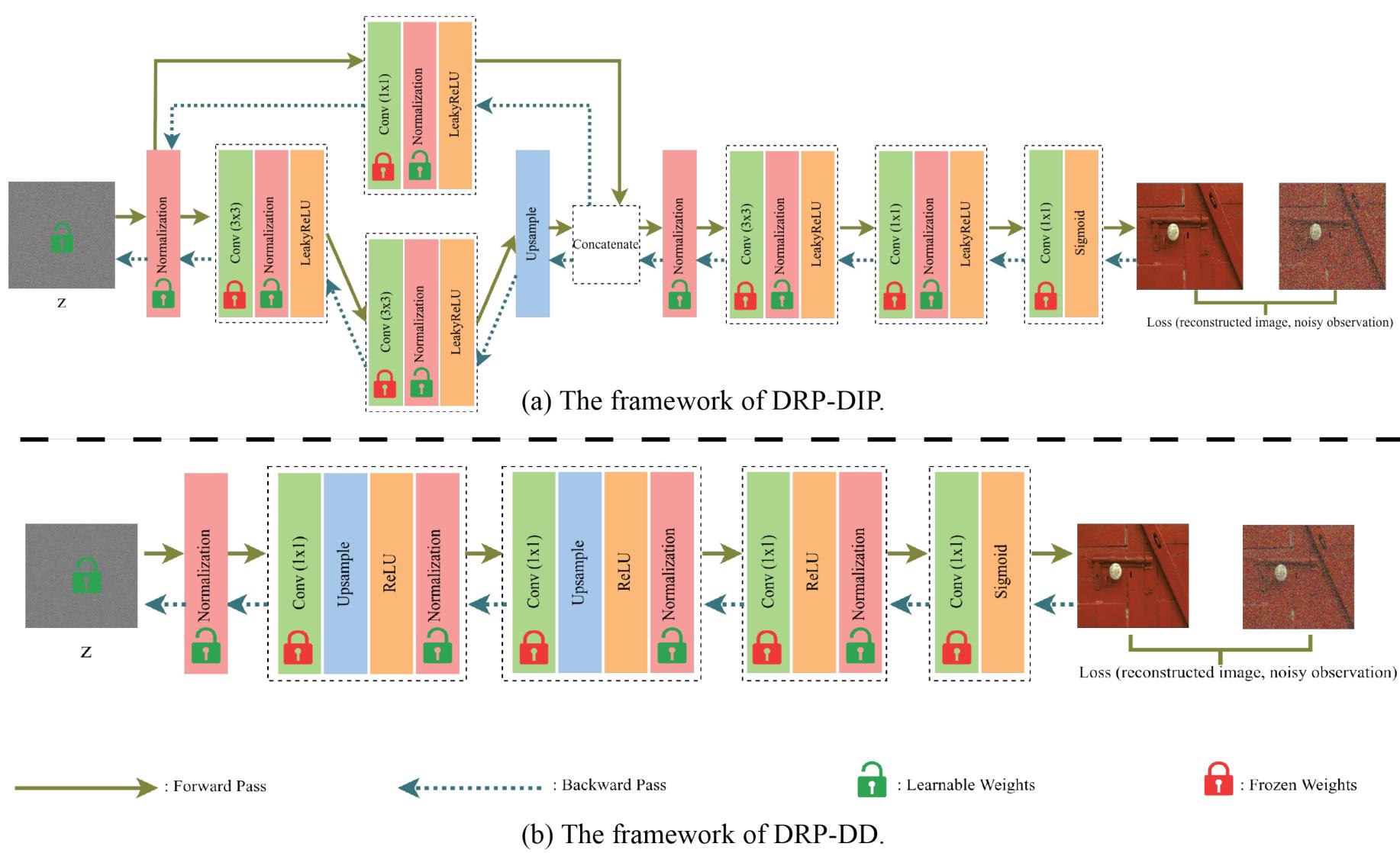


Key(s) to Retaining Restoration Quality

Adopting an explicit regularizer:

$\min_{\boldsymbol{z},\boldsymbol{\theta}_{BN}} \|\boldsymbol{y} - f \circ G_{\boldsymbol{\theta}}(\boldsymbol{z})\| + \lambda \mathrm{TV}(G_{\boldsymbol{\theta}}(\boldsymbol{z}))$

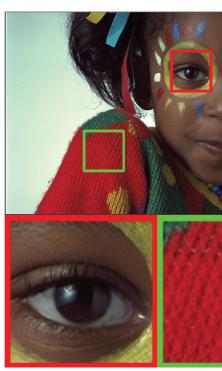
Experiments: Implementation



Experiments: Image Denoising

Problem setting:

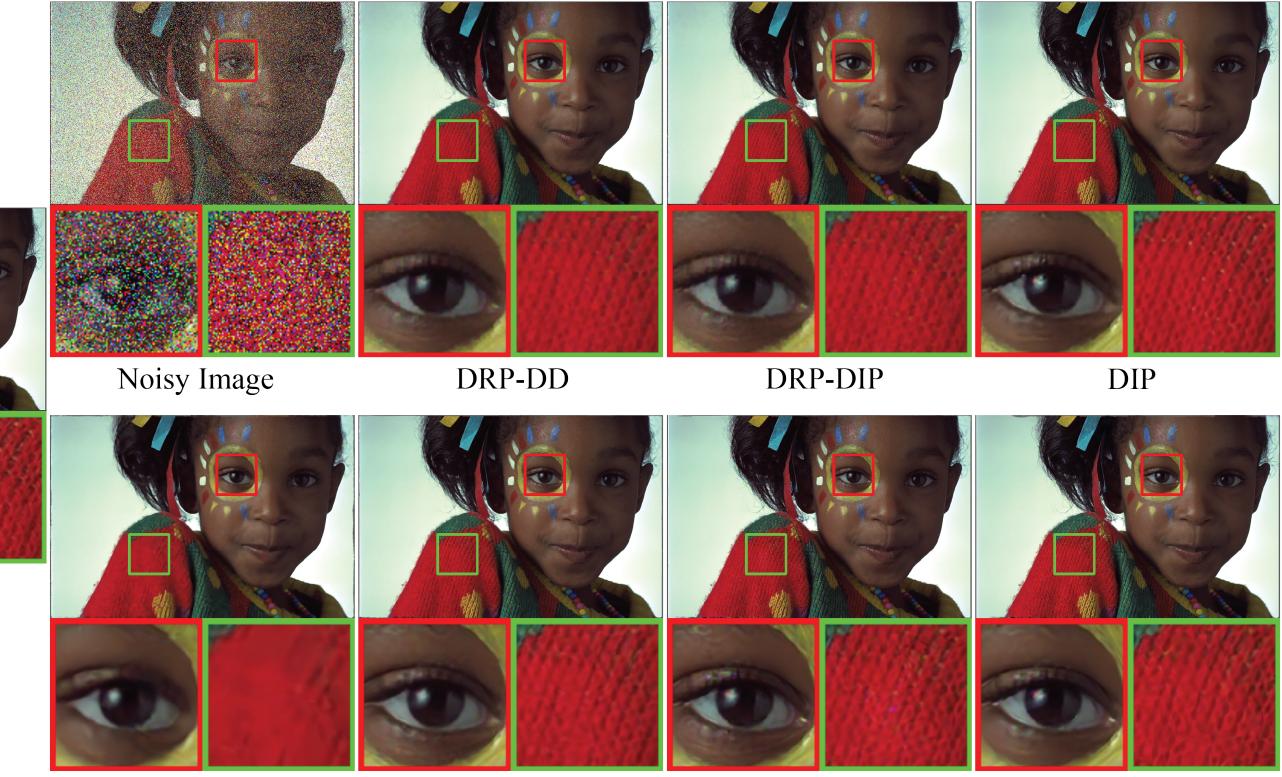
- given a noisy image $\mathbf{y} = \mathbf{x} + n$
- restore **x**



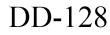
Objective function:

Original Image

 $\min_{\boldsymbol{z},\boldsymbol{\theta}_{BN}} \|\boldsymbol{y} - G_{\boldsymbol{\theta}}(\boldsymbol{z})\| + \lambda \mathrm{TV}(G_{\boldsymbol{\theta}}(\boldsymbol{z})).$



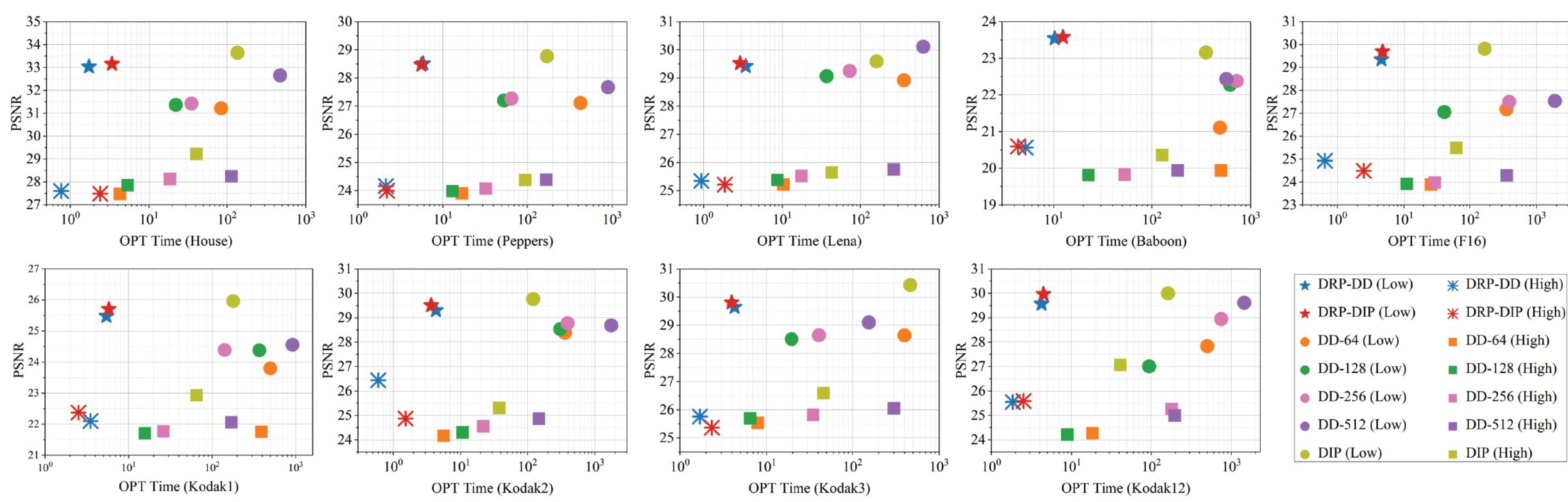
DD-64

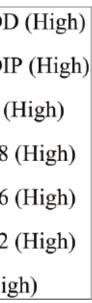


DD-256

DD-512

Experiments: Image Denoising





Experiments: Image Inpainting

Problem setting:

- given a noisy image $\mathbf{y} = \mathbf{x} \odot \mathbf{m}$ and the corresponding mask **m**
- restore **x** by only using **y** and **m**

Objective function:

 $\min_{\boldsymbol{z},\boldsymbol{\theta}_{BN}} \|\boldsymbol{y} - G_{\boldsymbol{\theta}}(\boldsymbol{z}) \odot \boldsymbol{m}\| + \lambda \mathrm{TV}(G_{\boldsymbol{\theta}}(\boldsymbol{z}))$

Original Image

DRP-DD

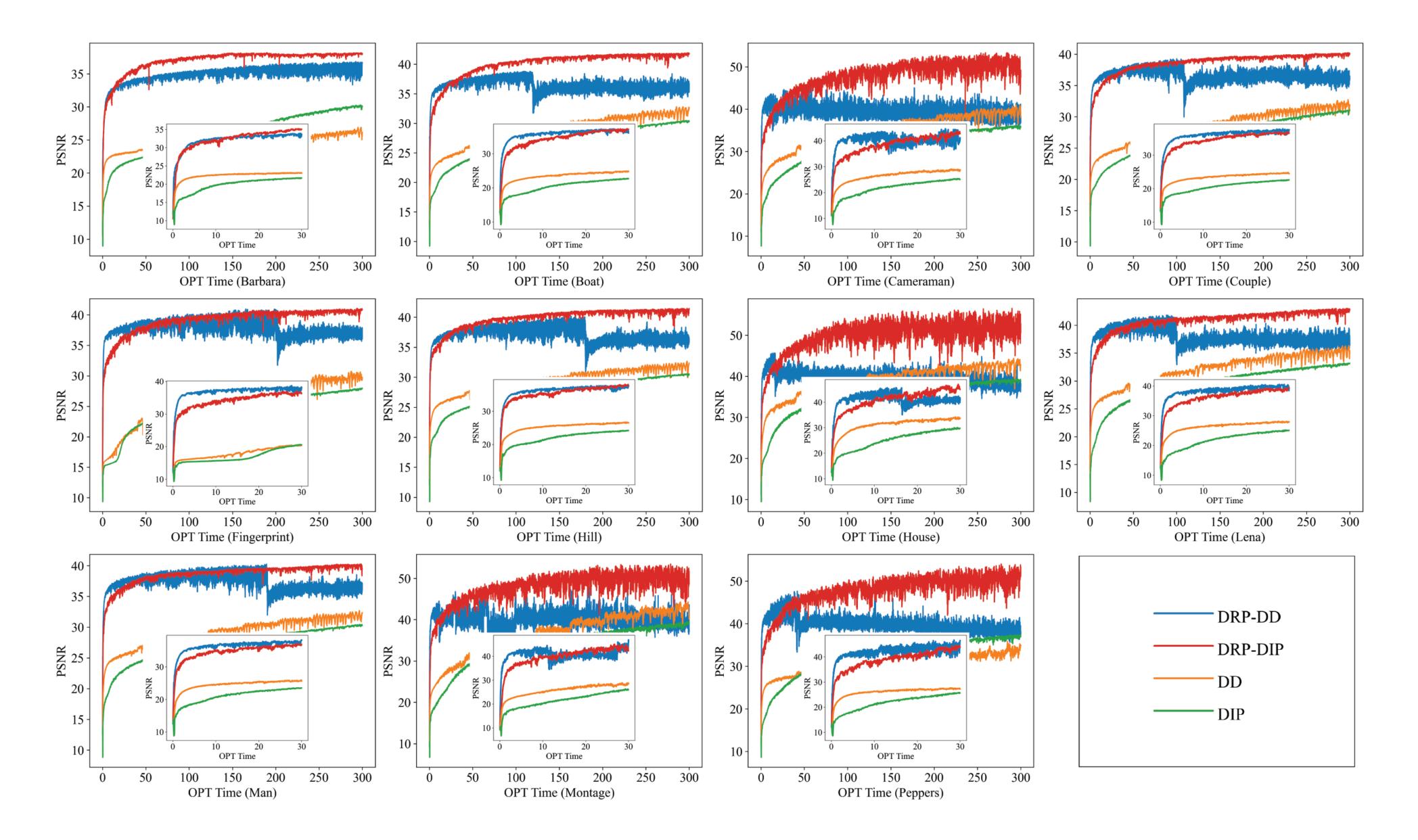
DRP-DIP

Noisy Image

DD

DIP

Experiments: Image Inpainting



Conclusion

• We investigate the slow optimization issue of DIP

• We propose a simple-yet-effective method named Deep Random Projector to speed up DIP

• We evaluate our method on common image restoration tasks and verify its effectiveness

References

[1] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky, "Deep image prior," in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. 2018, pp. 9446–9454, Computer Vision Foundation / IEEE Computer Society.

Thank you!