PURDUE UNIVERSITY®

Tree Instance Segmentation with Temporal Contour Graph

Adnan Firoze, Cameron Wingren, Raymond A. Yeh, Bedrich Benes, Daniel Aliaga

Purdue University, West Lafayette, Indiana

[Poster Number: 210, Paper Tag: TUE-AM-210]

We ask how many trees are in a densely packed scene like this and can we segment them?

Input frames

Deep edge detection using PIDINet¹

Input frames

Converting edge map to a graph

Input frames

Classify edges to merge nodes using motion (optical flow)

Input frames

Refined mask generated

Input frames

Final output of tree instances

Olympic National Forest, WA

Olympic National Forest, WA AP = 70.1

Martell Forest, IN

Martell Forest, IN AP = 74.5

Ridge State Forest, KY

Ridge State Forest, KY AP = 69.8

Contributions

Instance Segmentation

 of dense and tightly packed trees in forests from overhead UAV frames

Counting

 tree crowns that are highly similar, prone to occlusion, self-similar, and overlapping

Dataset Creation

- the largest UAV video dataset of forests to date (to our knowledge)
- linked for all in the paper

Roadmap

- Overview
- Observations
- Pipeline
- Quantitative Results
- Qualitative Results
- Future Works

Observations

- In dense forests, two adjacent tree crowns are:
 - tightly packed.
 - highly similar, and
 - often occluding.
- Making it a hard problem
- Using temporal features capturing motion leads to higher instance segmentation accuracy.

Roadmap

- Overview
- Observations
- Pipeline
- Quantitative Results
- Qualitative Results
- Future Works

Pipeline

Contour Graph/Structured Image Creation

Tree Frames

Deep edge map with overestimation

For edge detection:

Su, Z. et al. "Pixel Difference Networks for Efficient Edge Detection." 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021): 5097-5107.

Contour Graph/Structured Image Creation

Tree Frames

Conversion to graph

Contour Graph/Structured Image Creation

Tree Frames

(Temporal) Contour Graph

Node Features

Pixel Features: RGB patch features, LPIPS similarity to neighboring nodes **Shape Features:** Area, Extent, Aspect Ratio, Solidity

Self-occlusion Features: Temporal features (Optical Flows)

Pipeline

Node/Contour Merging

Input Image I_n

Contours \mathcal{C}

Edge Classification

Merged Node

Output Mask $oldsymbol{M}_t$

Pipeline using Visual Examples (Data Flow)

For edge detection:

Su, Z. et al. "Pixel Difference Networks for Efficient Edge Detection." 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021): 5097-5107.

Roadmap

- Overview
- Observations
- Pipeline
- Quantitative Results
- Qualitative Results
- Future Works

Instance Segmentation

Methods	Synthetic Forest			Forest A			Forest B			Forest C		
	$AP\uparrow$	AP_{50} \uparrow	AP_{70} \uparrow	$AP\uparrow$	AP_{50} \uparrow	AP_{70} \uparrow	AP↑	$\mathrm{AP}_{50}\uparrow$	$AP_{70}\uparrow$	$AP\uparrow$	$AP_{50}\uparrow$	AP_{70} \uparrow
Mask-RCNN (ResNet)	27.1	53.6	50.1	33.4	57.3	54.1	39.2	58.8	56.1	35.1	57.9	58.4
Mask-RCNN (Swin-T)	59.8	70.2	68.3	64.6	74.1	70.5	69.5	77.3	72.4	63.2	72.6	70.3
TraDeS	61.1	55.2	64.4	58.1	71.3	66.8	63.7	73.9	70.5	59.6	704	64.1
BoundaryFormer	56.3	65.1	57.5	60.9	72.9	66.2	64.1	73.4	69.2	58.9	71.2	61.8
Ours	74.6	73.1	69.5	74.5	81.6	72.8	69.8	76.2	71.5	70.1	75.4	72.5
Tree Count												
Mathada		ynthetic	Forest	1	Forest	A	1	Forest 1	B I		Forest C	2
Methods	S G1	ynthetic Pred.	Forest Acc. ↑	GT	Forest Pred.	A Acc. ↑	GT	Forest I Pred.	B Acc. \uparrow	GT	Forest C Pred. ↑	C Acc. ↑
Methods Mask-RCNN (ResNet	S G7 t) 515	ynthetic Pred. 7 3291	Forest Acc. ↑ 63.8	GT 2314	Forest Pred.	A Acc. ↑ 73.1	GT 2041	Forest I Pred. 1281	B Acc. ↑ 62.8	GT 2172	Forest C Pred. ↑ 1403	C Acc. ↑ 64.6
Methods Mask-RCNN (ResNet Mask-RCNN (Swin-T	S G7 t) 515 c) 515	ynthetic Pred. 7 3291 7 4275	Forest Acc. ↑ 63.8 82.9	GT 2314 2314	Forest Pred. 1691 1816	A Acc. ↑ 73.1 78.5	GT 2041 2041	Forest I Pred. 1281 1655	B Acc. ↑ 62.8 81.1	GT 2172 2172	Forest C Pred. ↑ 1403 1791	C Acc. ↑ 64.6 82.5
Methods Mask-RCNN (ResNet Mask-RCNN (Swin-T TraDeS	S GT t) 515 () 515 () 515 () 515	ynthetic Pred. 7 3291 7 4275 7 4131	Forest Acc. ↑ 63.8 82.9 80.1	GT 2314 2314 2314 2314	Forest Pred. 1691 1816 1987	A Acc. ↑ 73.1 78.5 85.9	GT 2041 2041 2041	Forest I Pred. 1281 1655 1596	B Acc. ↑ 62.8 81.1 78.2	GT 2172 2172 2172 2172	Forest C Pred. ↑ 1403 1791 1611	C Acc. ↑ 64.6 82.5 74.2
Methods Mask-RCNN (ResNet Mask-RCNN (Swin-T TraDeS BoundaryFormer	S GT t) 515 515 515 515	ynthetic Pred. 7 3291 7 4275 7 4131 7 3981	Forest Acc. ↑ 63.8 82.9 80.1 77.2	GT 2314 2314 2314 2314 2314	Forest Pred. 1691 1816 1987 1950	A Acc. ↑ 73.1 78.5 85.9 84.3	GT 2041 2041 2041 2041 2041	Forest I Pred. 1281 1655 1596 1549	B Acc. ↑ 62.8 81.1 78.2 75.9	GT 2172 2172 2172 2172 2172	Forest C Pred. ↑ 1403 1791 1611 1713	C Acc. ↑ 64.6 82.5 74.2 78.9

Forest A = Martell Forest, IN

Forest B = Kentucky Ridge State Forest, KY

Forest C = Olympic National Forest, WA

[More baseline comparisons are given in the paper.]

Roadmap

- Overview
- Observations
- Pipeline
- Quantitative Results
- Qualitative Results
- Future Works

¹ Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Int. Conf. Comput. Vis.*, 2021

¹ Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Int. Conf. Comput. Vis.*, 2021

¹ Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Int. Conf. Comput. Vis.*, 2021

¹ Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Int. Conf. Comput. Vis.*, 2021

Roadmap

- Overview
- Observations
- Pipeline
- Quantitative Results
- Qualitative Results
- Future Works

Future Works

- Extend the approach to other tightly packed objects such as:
 - Dense Crowds
 - Animals
 - Bees
 - Traffic
- Explore other continents
- Implement an online solution to the approach.

Thank you very much for your time and attention.