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Addressed Task: Source Free Domain adaptation

Existing SOTA:  Memory-based Pseudo-Labelling

Target Model

Source-Free Domain Adaptation

• While adaptation, access to 
source data is not available.

• Pre-trained Source Model and 
unlabeled target data is 
available.

State-of-the-art Methods

• Follows self- training strategy

• Use memory bank and nearest 
neighboring techniques

• Struggles in resource-constraint 
scenarios



Proposed Method
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Can we design a memory-bank-free SFDA approach that can guide the self-training with highly precise pseudo-labels?

▪ Image Classification
▪ Semantic Segmentation
▪ Online Test-time Adaptation

• Curriculum learning-aided selective self-training strategy.

• Prioritizes learning from highly reliable pseudo-labels and 
propagating label information to less reliable ones.
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What is Domain Adaptation?

Supervised Domain Adaptation Unsupervised Domain Adaptation (UDA)

Source (With Labels) Target (No Labels)

Adapt to
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Source-Free Domain Adaptation (SFDA)

Source-Free Domain Adaptation-

❑ While adapting to target domain, access to source data is no longer available.

❑ No way to estimate the domain shift which is crucial in designing hyper-parameters.

❑ Most challenging domain adaptation setup and struggles under large domain shift.

Target Model 



Motivation

SOTA techniques follow self- training strategy where-

❑ Teacher model provides pseudo-label (PL) for the student model.

❑ Depending on the domain shift, the quality pseudo-label can vary.

❑ Bad quality pseudo-labels deteriorates the performance of student model. 

Pseudo label

Target Domain Data

Prediction

Cross Entropy loss

Student Only update student model through backpropagation

Teacher

EMA
Update

Classical Pseudo-Labelling



Motivation

Refined Pseudo-Labels

Evolving Target Domain Feature Space 

Memory BankInput Teacher

• To improve the pseudo-label quality existing SFDA techniques-

➢ Use memory bank and nearest neighboring techniques for pseudo-label refinement.

➢ Samples are labelled based on their N nearest neighbor’s predictions.

Sample to be labelled 

Neighbor Samples

Memory-based Pseudo-Labelling



Motivation

❖ Challenges with Nearest Neighboring-

✓ May have false/misleading neighbors.

✓ Refined pseudo-labels will be mostly noisy.

✓ Severely impacts the classes with large 
domain gap.

❖ Struggles under-

✓ Memory resource constraint.

✓ Limited computation.



Contribution

Classical PL

o No memory bank
o Computationally efficient

Memory-based PL

o Less accurate PL
o Poor performance

Advantages

Disadvantages

o More accurate PL
o SOTA performance

o Noisy neighbor issue
o Memory inefficient

o Computationally expensive

Advantages

Disadvantages

Our Proposed 
Technique



Method Overview

Batch of Inputs

• Intuition: Should not trust all the pseudo-labels -

• For some samples, generated pseudo-labels are always wrong.

• Memorization of such unreliable or noisy labels leads to poor performance.

• Concern: Can we identify the unreliable ones?

Teacher



Method Overview
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Selective Pseudo-Labeling (PL)
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Statistical Results

Due to our selective pseudo-labelling-

❑ Average confidence score increases (a).

❑ Average uncertainty score decreases (b).

❑ We select more samples with better 
precision (c).

❑ Overall accuracy improves significantly (d).

(a)

(b)

(c)

(d)



Experiments

➢ Image Recognition

✓ Office 31
✓ Office Home
✓ VISDA-C
✓ Domain-Net

➢ Semantic Segmentation

✓ GTA5 --> CityScapes
✓ SYNTHIA--> CityScapes
✓ CityScapes --> Dark Zurich

Figure: Example Source and Target Domains from VISDA-C
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Semantic Segmentation Results
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Conclusion

✓ We address the source-free domain adaptation problem.

✓ Our proposed method is based on self-training framework.

✓ We do not use any memory bank for pseudo-labelling.

✓ Our method is simple but highly effective.

✓ We achieve SOTA performance on several domain adaptation benchmarks.
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