

C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation

Nazmul Karim^{*}, Niluthpol Chowdhury Mithun⁺, Abhinav Rajvanshi⁺, Han-Pang Chiu⁺

Supun Samarasekera⁺, Nazanin Rahnavard^{*}

*University of Central Florida

⁺Center for Vision Technologies, SRI International

Paper Tag: THU-PM-336

Overview

Addressed Task: Source Free Domain adaptation

Source-Free Domain Adaptation

- While adaptation, access to source data is not available.
- Pre-trained Source Model and unlabeled target data is available.

State-of-the-art Methods

- Follows self- training strategy
- Use memory bank and nearest neighboring techniques
- Struggles in resource-constraint scenarios

Existing SOTA: Memory-based Pseudo-Labelling

Proposed Method

Can we design a memory-bank-free SFDA approach that can guide the self-training with highly precise pseudo-labels?

Proposed Framework

- Curriculum learning-aided selective self-training strategy.
- Prioritizes learning from highly reliable pseudo-labels and propagating label information to less reliable ones.

SOTA Performance

- Image Classification
- Semantic Segmentation
- Online Test-time Adaptation

Introduction

Overview on Domain Adaptation

Self-Training Framework

Our Proposed Method

Experimental Results

Conclusion.

What is Domain Adaptation?

Supervised Domain Adaptation

Unsupervised Domain Adaptation (UDA)

Source-Free Domain Adaptation (SFDA)

Source-Free Domain Adaptation-

□ While adapting to target domain, access to source data is no longer available.

□ No way to estimate the domain shift which is crucial in designing hyper-parameters.

□ Most challenging domain adaptation setup and struggles under large domain shift.

Motivation

SOTA techniques follow self- training strategy where-

□ Teacher model provides pseudo-label (PL) for the student model.

Depending on the domain shift, the quality pseudo-label can vary.

□ Bad quality pseudo-labels deteriorates the performance of student model.

Classical Pseudo-Labelling

Motivation

- To improve the pseudo-label quality existing SFDA techniques-
 - Use memory bank and nearest neighboring techniques for pseudo-label refinement.
 - \succ Samples are labelled based on their *N* nearest neighbor's predictions.

Memory-based Pseudo-Labelling

Motivation

Challenges with Nearest Neighboring-

- ✓ May have false/misleading neighbors.
- ✓ Refined pseudo-labels will be mostly noisy.
- ✓ Severely impacts the classes with large domain gap.

***** Struggles under-

- ✓ Memory resource constraint.
- ✓ Limited computation.

Contribution

Method Overview

- Intuition: Should not trust all the pseudo-labels -
 - For some samples, generated pseudo-labels are always wrong.
 - Memorization of such unreliable or noisy labels leads to poor performance.
- **Concern:** Can we identify the unreliable ones?

Method Overview

Selective Pseudo-Labeling (PL)

Statistical Results

Due to our selective pseudo-labelling-

□ Average confidence score increases (a).

Average uncertainty score decreases (b).

- □ We select more samples with better precision (c).
- □ Overall accuracy improves significantly (d).

Experiments

- ➢ Image Recognition
 - ✓ Office 31
 - ✓ Office Home
 - ✓ VISDA-C
 - ✓ Domain-Net
- Semantic Segmentation
 - ✓ GTA5 --> CityScapes
 - ✓ SYNTHIA--> CityScapes
 - ✓ CityScapes --> Dark Zurich

Figure: Example Source and Target Domains from VISDA-C

Image Classification Results

C-SFDA Results comparing Prior SOTA

Semantic Segmentation Results

C-SFDA Results comparing Prior SOTA

Semantic Segmentation Qualitative Results

Target Domain Image

GT

SOTA Baseline HCL

Ours

Conclusion

- \checkmark We address the source-free domain adaptation problem.
- ✓ Our proposed method is based on self-training framework.
- ✓ We do not use any memory bank for pseudo-labelling.
- \checkmark Our method is simple but highly effective.
- ✓ We achieve SOTA performance on several domain adaptation benchmarks.