

ViewNet: A Novel Projection-Based Backbone with View Pooling for Few-shot Point Cloud Classification

Jiajing Chen, Minmin Yang, Senem Velipasalar {jchen152, myang47, svelipas}@syr.edu

Electrical Engineering and Computer Science Department Syracuse University

THU-AM-112

- We propose a robust and effective 2D projection-based backbone, referred to as ViewNet, for few-shot point cloud classification
- We first provide an analysis of commonly used 3D point-based backbones in terms of point utilization, and argue that they are not well-suited for the few-shot learning task, especially with real-word point clouds obtained via scanning
- After visualizing projected depth images of point clouds, we observe that some projections are robust to missing points and deformations
- Motivated by above, we present ViewNet, which uses six different depth images that are projections
 of a point cloud, and employs our proposed View Pooling to generate more descriptive and
 distinguishing features
- ViewNet achieves SOTA performance on ScanObjectNN, ModelNet40-C and ModelNet40 datasets, and outperforms four different baselines on few-shot point cloud classification
- Ablation studies show that the ViewNet backbone can generalize and be employed together with different few-shot prediction heads, providing better performance than point-based backbones

State-of-the-art (SOTA)

- Cross-Instance Adaptation (CIA) [1] is a SOTA network, which uses a novel few-shot head with attention mechanism, referred to as CIA, for few-shot point cloud classification.
- In [1], different point cloud analysis networks [2-6] are compared as backbones, and it was shown that the best performance is achieved when DGCNN [6] is used as the backbone.
- In this work, we first show that point-based methods, such as DGCNN [6], are not the most suitable backbones for few-shot point cloud classification task, and then propose ViewNet.

Point Utilization Analysis

- In our previous work [7], we had shown that a large number of points are discarded during max pooling.
- In this study, we analyze the number of points utilized by DGCNN, for both traditional supervised classification and few-shot classification, on ModelNet40 [8] and ScanObjectNN [9] datasets. For few-shot classification, we use ProtoNet [10] to perform the experiments.

TSC refers to traditional supervised classification, and FS-n represents few-shot point cloud classification experiment at fold n. The number of input points is 1024 for all the experiments.

Point Utilization Analysis Cont'd

Dataset	Experiment Name	MED of no. of kept pnts	Accuracy
ModelNet40	TSC	252→464	92.51%
ModelNet40	FS-0	274→414	89.97%
ModelNet40	FS-1	257→390	83.46%
ModelNet40	FS-2	246→413	74.08%
ModelNet40	FS-3	271→416	76.13%
ScanObjectNN	TSC	<u>234</u> →397	83.10%
ScanObjectNN	FS-0	237→363	50.58%
ScanObjectNN	FS-1	230→391	62.17%
ScanObjectNN	FS-2	248→400	62.59%

TSC is the traditional supervised point cloud classification, and FS-n is few-shot point cloud classification at fold n. $a \rightarrow b$ shows the median value of the number of utilized points before and after training, respectively.

Smart Vision Systems Laboratory Syracuse University

- With the number of points utilized for few-shot classification being less than that for TSC, it is hard to expect DGCNN to extract the best set of features to describe 3D objects.
- Compared to ModelNet40 dataset, DGCNN uses less points on ScanObjectNN, and provides lower accuracy.
- Thus, it can be inferred that missing points and deformed shapes can negatively affect max-pooling, causing to pick up inadequate points to represent a 3D shape.

Smart Vision Systems Laboratory Syracuse University

Point Projection Analysis

- The first row: a point cloud sampled from a CAD model (referred to as Original), and point clouds with simulated missing points seen from five different angles.
- Rows 2 5: projection images on different planes
- Although the missing portion of the point cloud can be different, some projection images can provide robustness to varying occlusions

- Although projection-based approach [12] has been used together with ResNet for supervised point cloud classification, a traditional image classification backbone, such as ResNet, is not the most suitable for few-shot classification.
- Traditional CNN-based backbones are composed of convolution layers and process all depth images separately, without a module for extracting distinguishing features among all views' feature maps.

	Model	fold 0	fold 1	fold 2	fold 3	Mean
5-way	DGCNN+ProtoNet	85.42%	79.46%	70.06%	70.73%	76.42%
1-shot	ResNet+ProtoNet	83.29%	79.35%	64.44%	74.42%	75.38%%
5-way	DGCNN+ProtoNet	93.99%	88.65%	84.76%	85.56%	88.24%
5-shot	ResNet+ProtoNet	92.61%	87.39%	80.91%	86.96%	86.97%%

Comparison of ProtoNet's performance on ModelNet40, with DGCNN and ResNet as backbones, for 5-way 1-shot and 5-way 5-shot classification.

Proposed ViewNet

Smart Vision Systems Laboratory Syracuse University

Set Pooling. b is the number of bins, p is the number of pixels in each bin. The pooling is performed along the pixel dimension

- In Projection Feature Learning branch, convolution and max pooling are used to process each depth image independently, and obtain intermediate feature maps {Di|i ∈ {1, 2, 3}} for our proposed View Pooling.
- View Pooling extracts more descriptive and distinguishing features from different combinations of views, which are then fed into the Point Feature Learning Branch for further processing

Proposed ViewNet

Smart Vision Systems Laboratory Syracuse University

Average Poolig Max Poolig 128xb 128xb128xb

Set Pooling. b is the number of bins, p is the number of pixels in each bin. The pooling is performed along the pixel dimension

- The Point Feature Learning Branch learns the features describing the point cloud's shape from the feature maps of all six projections
- To learn discriminative features in different receptive fields, the pixels in feature maps F4 and F5 are divided into n-many bins
- Each bin's feature is fed into few-shot head, and the bin's loss is obtained. Final loss is computed by summing up n losses

View Pooling

Smart Vision Systems Laboratory Syracuse University

- Five new feature maps (Ci) are obtained from six view features in D by using them in different combinations
- Three of the five feature maps are obtained by taking all pairs of opposite projection feature maps into account, i.e. {(left, right), (front, back), (top, bottom)}. If a small part of points is missing, it is likely that at least one projection image in this combination of opposite projections is not affected greatly
- Remaining two of the five feature maps come from triplet combinations {(left, front, top), (right, back, bottom)}, since these three-view drawings are able to depict an object's 3D shape

- ModelNet40 [8] is a commonly used point cloud dataset, which contains 12,311 CAD models
 of 40 man-made object categories
- We sort those classes by their ID in an ascending order, and divide 40 classes into 4 folds to perform 4-fold cross validation experiments
- Our method outperforms all baselines in terms of mean accuracy for both 1-shot and 5-shot classification

		fold 0	fold 1	fold 2	fold 3	Mean
	MetaOpt	82.87±0.72	75.77±0.83	65.31±0.92	66.97±0.93	72.73±0.85
5	RelationNet	82.14±0.69	77.46±0.80	66.09±0.91	69.47±0.84	75.23±0.81
J-way	ProtoNet	85.42±0.64	79.46±0.76	70.06±0.39	70.73±0.42	76.42±0.55
1-51101	CIA	89.97±0.63	83.46±0.83	74.08±0.95	76.13±0.86	80.91±0.82
	Ours	92.57±0.52	82.68±0.80	75.28±0.90	80.95±0.75	82.87±0.74
	MetaOpt	92.37±0.38	86.44±0.62	82.10±0.58	83.15±0.55	86.02±0.53
5 way	RelationNet	91.53±0.38	85.11±0.61	79.36±0.63	83.01±0.52	84.75±0.53
5-shot	ProtoNet	93.99±0.29	88.65±0.54	84.76±0.51	85.56±0.48	88.24±0.45
	CIA	94.61±0.30	89.15±0.55	85.00±0.51	86.71±0.50	88.87±0.47
	Ours	96.23±0.26	89.64±0.55	85.74±0.51	90.18±0.45	90.45±0.44

- ModelNet40-C [11] contains the point clouds of the same 40 classes as ModelNet40, and different from ModelNet40, ModelNet40-C contains point clouds with different types of corruption to simulate real-world scenarios
- Again 4 folds are used for cross validation
- Our method outperforms all the baselines for each fold and for both 1-shot and 5-shot classification and improvement margins are larger compared to ModelNet40 dataset

		fold 0	fold 1	fold 2	fold 3	Mean
)	Metaopt	78.28±0.79	75.34±0.84	58.07±0.86	66.29±0.91	69.50±0.85
5	RelationNet	79.59±0.74	74.63±0.84	59.03±0.81	68.38±0.86	70.41±0.81
1-shot	ProtoNet	81.29±0.71	75.83±0.79	61.76±0.84	69.83±0.84%	72.18±0.80
	CIA	85.70±0.75	79.67±0.90	65.68±1.0	74.32±0.94	76.34±0.89
	Ours	89.47±0.58	81.05±0.78	69.56±0.89	76.29±0.85	79.09±0.78
5-way 5-shot	Metaopt	91.09±0.40	84.19±0.57	75.10±0.73	81.34±0.53	82.93±0.56
	RelationNet	87.12±0.46	83.55±0.54	70.18±0.78	79.01±0.58	79.97±0.59
	ProtoNet	90.97±0.39	86.21±0.50	76.99±0.65	83.19±0.51	84.34±0.51
	CIA	92.07±0.36	86.81±0.56	76.11±0.71	83.71±0.51	84.68±0.54
	Ours	94.95±0.31	88.75±0.49	81.53±0.60	86.78±0.46	88±0.47

- ScanObjectNN [9] dataset contains 15k objects from 15 categories
- Since the point clouds are scanned from real world objects, missing points due to occlusion frequently occur, posing greater challenges
- The classes are sorted in ascending order based on their ID, and then evenly divided into 3 folds for 3-fold cross validation
- Improvement margins are highest on this dataset showing that our proposed method is also effective on point clouds scanned from the real-world

		fold 0	fold 1	fold 2	Mean
	MetaOpt	41.92±0.72	61.12±0.66	53.87±0.78	52.30±0.72
5	RelationNet	50.29±0.76	54.23±0.63	51.45±0.64	51.99±0.68
J-way	ProtoNet	50.81±0.73	60.46±0.67	58.72±0.78	56.66±0.73
1-SHOL	CIA	50.58±0.82	62.17±0.68	62.59±0.74	58.45±0.75
	Ours	60.90±0.76	66.48±0.60	64.10±0.77	63.83±0.71
	MetaOpt	63.86±0.56	67.73±0.45	70.19±0.49	67.26±0.50
5	RelationNet	58.65±0.53	66.72±0.50	65.94±0.52	63.77±0.52
5-shot	ProtoNet	68.42±0.54	70.20±0.52	68.76±0.49	69.13±0.52
	CIA	62.94±0.51	71.31±0.45	70.21±0.48	68.15±0.48
	Ours	73.66±0.48	74.77±0.45	77.46±0.46	75.3±0.46

We perform ablation studies to analyze:

- Effectiveness of bin-wise loss
- ViewNet's Generalizability as a backbone
- Effectiveness of View Pooling

		fold 0	fold 1	fold 2	Mean
	DGCNN+MetaOpt	41.92%	61.12%	53.87%	52.3%
5	ViewNet+MetaOpt	48.74% (†6.82%)	61.62% (↑0.5%)	58.95% (†5.08%)	56.44% (†4.14%)
J-way	DGCNN+RelationNet	50.29%	54.23%	51.45%	51.99%
1-shot	ViewNet+MetaOpt	55.73% (†5.44%)	60.32% (↑6.09%)	59.10% (†7.65%)	58.38% (†6.39%)
	DGCNN+ProtoNet	50.81%	60.46%	58.72%	56.66%
	ViewNet+ProtoNet	56.02% (†5.21%)	64.06% (†3.6%)	64.05% (†5.33%)	61.37% (†4.71%)
	DGCNN+CIA	50.58%	62.17%	62.59%	58.45%
	ViewNet+CIA	60.81% (†10.23%)	65.84% (†3.67%)	64.19% (†1.6%)	63.61% (†5.16%)
	DGCNN+MetaOpt	63.86%	67.73%	70.19%	67.26%
5	ViewNet+MetaOpt	67.97% (†4.11%)	73.04% (†5.31%)	75.12% (†4.93%)	72.04% (†4.78%)
5 shot	DGCNN+RelationNet	58.65%	66.72%	65.94%	63.77%
3-shot	ViewNet+RelationNet	67.49% (†8.84%)	66.51% (↓0.21%)	72.01% (↑6.08%)	68.67% (†4.9%)
	DGCNN+ProtoNet	68.42%	70.2%	68.76%	69.13%
	ViewNet+ProtoNet	75.13% (↑6.71%)	74.41% (†4.21%)	77.07% (†8.31%)	75.54% (↑6.41%)
	DGCNN+CIA	62.94%	71.31%	70.21%	68.15%
	ViewNet+CIA	72.69% (†9.75%)	73.56% (†2.25%)	75.33% (†5.12%)	73.86% (†5.71%)

	Backbone Feature	fold 0	fold 1	fold 2	Mean
5-way	O'	57.29%	64.47%	62.52%	61.43%
1-shot	0	60.90%	66.48%	64.10%	63.83%
5-way	<i>O'</i>	73.28%	74.41%	75.42%	74.37%
5-shot	0	73.66%	74.77%	77.46%	75.30%

Analysis of the Bin-wise Loss

	View Pooling Type	fold 0	fold 1	fold 2	Mean
5-way	Without C_i	60.98%	63.41%	63.81%	62.73%
1-shot	With C_i	60.90%	66.48%	64.10%	63.83%
5-way	Without C_i	73.14%	72.76%	75.85%	73.92%
5-shot	With C_i	73.66%	74.77%	77.46%	75.30%

Analysis of View Pooling

ViewNet's Generalizability as a Backbone

[1] Ye, Chuangguan, et al. "What Makes for Effective Few-shot Point Cloud Classification?." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022.

[2] Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

[3] Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing systems 30 (2017).

[4] Liu, Yongcheng, et al. "Relation-shape convolutional neural network for point cloud analysis." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[5] Liu, Yongcheng, et al. "Densepoint: Learning densely contextual representation for efficient point cloud processing." Proceedings of the IEEE/CVF international conference on computer vision. 2019.

[6] Wang, Yue, et al. "Dynamic graph cnn for learning on point clouds." Acm Transactions On Graphics (tog) 38.5 (2019): 1-12.

[7] Chen, Jiajing, et al. "Why Discard if You Can Recycle?: A Recycling Max Pooling Module for 3D Point Cloud Analysis." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[8] Wu, Zhirong, et al. "3d shapenets: A deep representation for volumetric shapes." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

[9] Uy, Mikaela Angelina, et al. "Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data." Proceedings of the IEEE/CVF international conference on computer vision. 2019.

[10] Snell, Jake, Kevin Swersky, and Richard Zemel. "Prototypical networks for few-shot learning." Advances in neural information processing systems 30 (2017).

[11] Sun, Jiachen, et al. "Benchmarking robustness of 3d point cloud recognition against common corruptions." arXiv preprint arXiv:2201.12296 (2022).

[12] Goyal, Ankit, et al. "Revisiting point cloud shape classification with a simple and effective baseline." International Conference on Machine Learning. PMLR, 2021.

Smart Vision Systems Laboratory Syracuse University

Thanks!

Questions?

jchen152@syr.edu

