

Detection of out-of-distribution samples using binary neuron activation patterns

TUE-AM-321

Bartłomiej Olber^{1, 2}, Krystian Radlak^{1, 2}, Adam Popowicz², Michal Szczepankiewicz³, Krystian Chachuła² ¹Warsaw University of Technology ²Silesian University of Technology ³NVIDIA

https://safednn.com/

Detection of out-of-distribution samples using binary neuron activation patterns

OOD detection with NAP – detector setup (1)

.

• For each training image run forward pass through the classifier, extracting binary activation patterns from ReLU-activated layers.

Save extracted patterns in data structures enabling a fast nearest neighbor search, e.g., the ball tree.. For each layer and image label use separate data structure.

OOD detection with NAP – test phase (2)

- Run classification and extraction of patterns for the test image.
- For each layer independently, compute Hamming distance to the most similar known pattern (out of all known patterns from given layer and the test image's predicted label).
- Combine the uncertainty estimations from multiple layers into a single score.
- Layers contributing to the final score are selected by grid search using validation OOD dataset.

OOD detection with NAP – extracting patterns

- Pooling channel mean or maximum
- Extracting from linear layers requires solely binarization
- Binarization
 - · Zero p-% smallest activations in the vector
 - · Replace all remaining positive values with '1'
 - · Cast the vector into memory efficient boolean representation

A less biased OOD detectors evaluation scheme - OD-test [1]

- **Datasets:** MNIST, FashionMNIST, CIFAR10, CIFAR100, STL10, TinyImagenet, NotMNIST, normal noise, uniform noise
- Metrics: AUROC, accuracy
- Network architectures: VGG, ResNet
- **SOTA algorithms:** our method was compared with 17 state-of-the-art OOD detectors
- **Evaluation protocol:** All datasets were used in all combinations as D_s, D_v and D_t. Each method's performance is a mean of 308 evaluations

- D_s training (source) distribution
- D_v validation out-of-distribution
- D_t test out-of-distribution

[1] Alireza Shafaei, Mark Schmidt, and James J. Little. A less biased evaluation of out-of-distribution sample detectors.

Results

ResNet

٠

> VGG

- The best AUROC improved by 0.1% T
- The best accuracy improved by 1.1%
- The best AUROC improved by 3.4%
- The best accuracy improved by 1.2%
- Reasonably good time and memory efficiency

0.8 - 0.5833 0.5 - 0.0 0.5	-0.6753 -0.6846 -0.6913 -0.6913 -0.6971 -0.7032 -0.7032	-0.7090 -0.7094 -0.7125 -0.7124 -0.7154 -0.7164 -0.7203 -0.7236	0.7257 0.7261 0.7261 0.7262 0.7262 0.7272 0.7272 0.7273 0.7273 0.7273 0.7273 0.7273 0.7273 0.7273 0.7273 0.7273 0.7273 0.7273 0.7275 0.7275 0.7275 0.7275 0.7275 0.7275 0.7261 0.7275 0.7261 0.7265 0.7275 0.7265 0.7265 0.7275 0.7265 0.7275 0.7265 0.7275 0.7275 0.7275 0.7275 0.7275 0.7275 0.7275 0.7275 0.7275 0.7275 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.77755 0.777555 0.777555 0.777555 0.777555 0.777555 0.777555 0.777555 0.777555 0.777555 0.7775555 0.7775555 0.7775555 0.77755555 0.7775555555555555555555555555555555555	0.7453 0.7454 0.7454 0.7481 0.7481 0.7490 0.7726 0.7754	- 0.7850 - 0.7892 - 0.7915 - 0.7915 - 0.7923 - 0.8223 - 0.8326
OpenMax/Res - GradNorm/Res - GradNorm/Res - DenMax/VGG - J-VNNSVM - ASHB/VGG - ASHB/VGG - ASHB/VGG - ASHB/VGG - ASHB/VGG - ASHM-VGSVM - 2-VNNSVM - 2-VNNSVM -	OutlierExposure/Res BinClass/VGG - Log.SVM/Res - BinClass/Res - BinClass/Res - PbThresh/Res - AEThre./MSE -	2-MNNSVM 4-MNNSVM 8-MNNSVM 2-MNNSVM 2-MNNSVM 1-BNNSVM 2-BNNSVM 2-BNNSVM 2-BNNSVM	DeepEns./VGG - 8-NNSVM - Energy/VGG - PbThresh/VGG - ASHB/Res - Energy/Res - 1-NNSVM - MC-Dropout - 2-NNSVM -	GradNorm/Vcu - MeanShiftedAD/VGG - OutlierExposure/VGG - AEThre./BCE - Log.SVM/VGG - ReAct/Res - ScoreSVM/VGG - ScoreSVM/VGG -	Mahalanobis/Res - Mahalanobis/Res - NAP_1/Res - NAP_2/Res - NAP_1/NGG - Mahalanobis/VGG - NAP_2/VGG -

Method	Time [s]		
	VGG	ResNet	
ASH-B	0.004	0.009	
BinClass	0.002	0.007	
DeepEns.	0.012	0.038	
Energy	0.003	0.008	
GradNorm	0.010	0.027	
Log.SVM	0.003	0.006	
MC-Dropout	0.003	0.007	
Mahalanobis	0.217	0.086	
MeanShiftedAD	0.231	0.314	
ODIN	0.010	0.028	
OpenMax	0.035	0.040	
OutlierExposure	0.003	0.008	
PbThresh	0.002	0.007	
ReAct	0.003	0.008	
ScoreSVM	0.002	0.006	
Ours (NAP)	0.008	0.015	

Summary

• We introduced a novel OOD detector that uses Neuron Activation Patterns.

• We published the largest evaluation benchmark for OOD detection consisting of 18 OOD methods.