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Preview of Our Work
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❑ We debias predicted scene graph triplets with within-triplet Bayesian network. 

❑ We improve the performance of 𝒕𝒂𝒊𝒍 classes at the minimal expense of 𝒉𝒆𝒂𝒅 classes 



Why debias Scene Graphs? 
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Probabilistic Debiasing of Scene Graphs

Long-tailed distribution of relationship labels 
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Poor performance of tail classes in SOTA model

𝒉𝒆𝒂𝒅

❑ Deep learning-based  Scene Graph Generation (SGG) models perform poorly on the tail classes

❑ Traditional debiasing schemes 

❑ improve the tail classes with significant hurting of the head classes 

❑ ignore within-triplet prior 

❑ We debias scene graph with restoring within-triplet prior and hurt the head classes minimally 



Within-triplet Prior in Scene Graphs
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❑ A ‘man’ will most likely be ‘on’ or ‘hold’ a ‘surfboard’. ❑ A ‘man’ will most likely ‘eat’ or ‘hold’ a ‘pizza’. 

𝑃 𝑅 𝑆 = 𝑚𝑎𝑛, 𝑂 = 𝑝𝑖𝑧𝑧𝑎)𝑃 𝑅 𝑆 = 𝑚𝑎𝑛, 𝑂 = 𝑠𝑢𝑟𝑓𝑏𝑜𝑎𝑟𝑑)

❑ Distribution of relationship is strongly dependent on its subject 

and object ! 
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Bayesian Network (BN) to capture within-triplet prior
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❑ Joint distribution of subject, relationship, and object is denoted by 𝑷 𝑺, 𝑹,𝑶

❑ We aim to capture this joint distribution with a Bayesian Network

❑ Assumptions -

❑ Relationship is dependent both on its subject and object, 

❑ Subject and object are independent of each other, 

❑ Subject and object become dependent given the relationships. 

❑ Under these assumptions –

❑ 𝑃 𝑆, 𝑅, 𝑂 = 𝑃 𝑅 𝑆, 𝑂 𝑃 𝑆 𝑃 𝑂
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Learning Within-Triplet Bayesian Network
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❑ Learning with annotated triplets 

❑ Learning with augmented triplets 

❑ Top-50 relationships from full dataset are chosen for SGG task.

❑ Many other relationships in the dataset outside these top-50 bear similar meaning 

❑ man-consuming-pizza is similar to man-eating-pizza

❑ We augment triplet counts with similar triplets 

❑ Similarity is calculated in embedding space of triplets. 

Learning 𝑃(𝑅|𝑆, 𝑂)

Learning 𝑃(𝑅)

Augmented count
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Uncertain Evidence of Triplets 
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❑ A baseline measurement model produces probability of –

❑ subject (𝑆), relationship (𝑅), and object 𝑂 of each triplet 𝑇 in a scene graph.

❑ We denote these probabilities as 𝑃𝑀 𝑆 , 𝑃𝑀 𝑂 , and 𝑃𝑀 𝑅 .

❑ We incorporate these probabilities into our proposed BN as uncertain evidence to perform posterior inference. 

❑ Uncertain evidence is incorporated as virtual evidence. 

Baseline 

SGG 

model

𝑆

𝑅

𝑂

𝑃𝑀 𝑆

𝑇

𝑃𝑀 𝑅

𝑃𝑀 𝑂

Within-triplet BN

???



Virtual Evidence of Within-Triplet BN
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❑ Three virtual evidence nodes 𝑍𝑠, 𝑍𝑜, 𝑍𝑟 are created as child of their respective parents 𝑆, 𝑂, and 𝑅.

❑ The conditional probabilities of these nodes are specified from their likelihood ratios

❑ Likelihood ratio is obtained by scaling the biased measured probability by the biased marginal probability

❑ The scaling bolsters the probability of 𝒕𝒂𝒊𝒍 classes of 𝒉𝒆𝒂𝒅-driven  baseline model. 

Virtual Evidence (VE) of triplet elements Specifying conditional probability of VE nodes 

Measured probability

Marginal probability
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Posterior inference of Within-Triplet BN
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Measured subject prob.

Measured object prob.

Measured relationship prob.

Conditional relationship prob. 

Marginal relationship prob. 
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Overview of our proposed approach
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Constrained Optimization for Adjusting Inference Results
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❑ Subject or object of any triplet may be shared by other triplets.

❑ Therefore, posterior inference of individual triplet may produce different results for the same subject or object. 

❑ Need to perform a constrained optimization to resolve such conflicts. 
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Constrained Optimization for Adjusting Inference Results
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❑ Two-step iterative optimization. At each iteration, we perform -

❑ Object updating: refine each object node separately keeping all other nodes fixed. 

❑ Relationship updating: refine each relationship node separately keeping all other nodes fixed. 
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Object Updating
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𝑍𝑅𝑗

Relationship Updating
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Evaluation Metric
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❑ Recall 𝑹@𝑲

❑ 𝑀𝐼 → Total matched triplets in image 𝐼 in top-K predicted triplets

❑ 𝐺𝐼 → Total ground truth triplets in image 𝐼

❑ 𝑅@𝐾 =    
1

NI
σ𝐼

𝑀𝐼

𝐺𝐼

❑ Mean Recall 𝒎𝑹@𝑲

❑ 𝑀𝐼,𝑅 → Total matched triplets of relation 𝑅 in image 𝐼 in top-K predicted triplets

❑ 𝐺𝐼,𝑅 → Total ground truth triplets of relation R in image 𝐼

❑ 𝑚𝑅@𝐾 =    
1

NR
σ𝑅

1

NI
σ𝐼

𝑀𝐼,𝑅

𝐺𝐼,𝑅
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Performance Comparison from Baseline Model
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❑ Recall is decreasing

❑Mean Recall is increasing
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Performance Comparison from Baseline Model
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❑ Relationships are ordered with 

descending order of their frequencies

❑ head classes such as ‘on’, ‘near’ , ‘has’ , 

‘behind’ is dropping

❑ 𝑡𝑎𝑖𝑙 classes are improving

❑ Typical behavior in SGG debiasing work  
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Performance Comparison with SOTA debiasing methods
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❑ Other debiasing methods 

❑ decrease the 𝑅@𝐾 significantly since they do not 

incorporate the within-triplet prior.

❑ require re-training of the baseline models. 

❑ Our method 

❑ hurts the 𝑅@𝐾 less brutally. 

❑ requires no re-training of the baseline model. 

(Baseline) 

Probabilistic Debiasing of Scene Graphs



Conclusion
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❑We debiased the predicted scene graphs with minimal hurting of the head classes 

❑We incorporated within-triplet prior in debiasing step through a Bayesian Network

❑ Triplet evidence is incorporated into BN with virtual evidence

❑ Possible conflicts in subject and object are resolved with a constraint optimization step

❑ Our method 

❑ improves the 𝒕𝒂𝒊𝒍 classes with minimal hurting of the head classes

❑ requires no re-training of the baseline models

❑ can be incorporated as a plug-and-play module   
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