

Poster ID: THU-AM-004

Post-Processing Temporal Action Detection

Sauradip Nag^{1,2}

Xiatian Zhu^{1,3}

Yi-Zhe Song^{1,2}

Tao Xiang^{1,2}

¹CVSSP, University of Surrey, UK ²IFlyTek-Surrey Joint Research Centre for Artificial Intelligence, UK ³People Centered AI, University of Surrey, UK

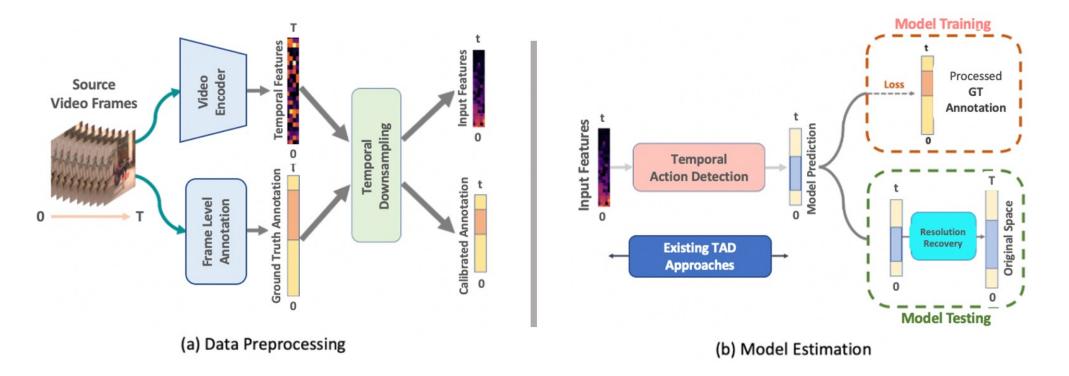
Task Description : Revisiting Temporal Action Detection

Untrimmed Video

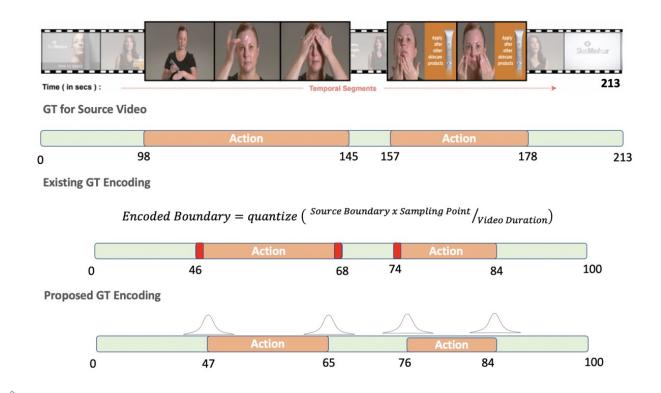
What is the Activity ? ("Playing Ice Hockey") Sub-Task 1 : Action Classification

When is the Activity Occuring ? (13 s - 28 s)

Sub-Task 2 : Temporal Regression



Current Approaches: Data Pre-Processing and Model Estimation


Downsample the Temporal Resolution ; Detect Actions in downsampled resolution ; Inference in original resolution

Quantization Error : How does it Arise ?

Quantization Error (in red) is introduced at start/end points of action due to ceiling/floor/round operations.

We solve this by fitting Gaussian Distribution at start/end points.

Quantization Error : How to Solve ?

GT Label

		Action		
0	62		78	100

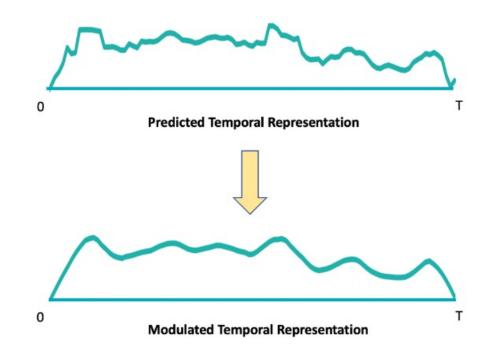
Existing Snippet Level Prediction

Our Sub-Snippet Level Post-Processing

		Action	
0	56.48	75.17	100

Instead of **Standard Snippet Level Prediction** we predict at **Sub-Snippet Level**

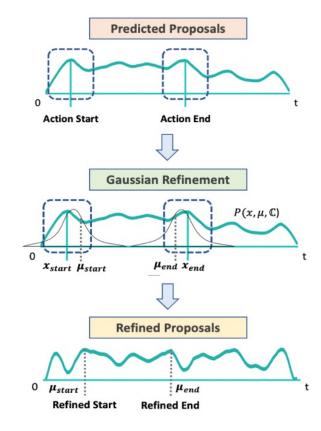
Each Snippet may contain action/background frame



Gaussian Approximated Post-Processing

Step 1: Temporal Smoothing

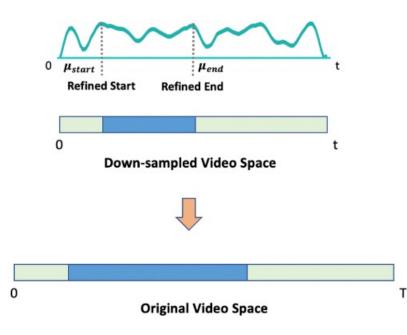
Given a Action Temporal Snippet Representation,


We smooth the distribution using Gaussian Kernel to avoid multiple peaks.

Gaussian Approximated Post-Processing

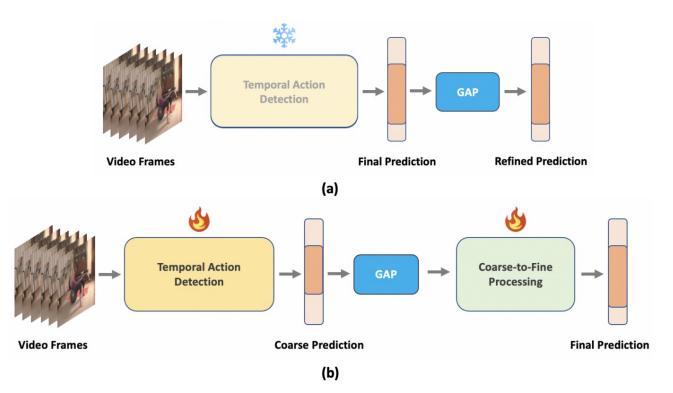
Step 2: Gaussian Refinement and Calibration

Given a predicted boundary point (start/end) :


- a) We fit Gaussian Distribution at the boundary point
- b) We find the **optimal Shift** using **Taylors Expansion**
- c) The newly shifted start/end points are at sub-snippet level

Gaussian Approximated Post-Processing

Step 3: Temporal Resolution Recovery


We **recover the temporal resolution** by multiplying the Video Duration

The refined start/end point reduces the quantization error at sub-snippet level

GAP Integration : Plug-And-Play Module

Can be used during both

(a) Model Retraining

(b) Inference Post-Processing

on Standard Sunary

GAP Improves on Standard Supervised Action Detection

Cotogowy	Mothod	ActivityNet mAP			THUMOS14 mAP				
Category	Method	0.5			A	0.2			A
		0.5	0.75	0.95	Avg	0.3	0.5	0.7	Avg
	MUSES	50.0	34.9	6.5	34.0	68.9	56.9	31.0	53.4
Anchor-based	MUSES + GAP	50.3	35.5	6.9	34.3	69.3	57.8	31.9	53.8
Aliciioi-baseu	PBRNet	53.9	34.9	8.9	35.0	58.5	51.3	29.5	-
	PBRNet + GAP	54.4	35.4	9.2	35.2	59.2	51.9	30.0	-
	BMN	50.1	34.8	8.3	33.9	56.0	38.8	20.5	38.5
	BMN + GAP	50.5	35.2	8.6	34.3	56.6	39.4	21.0	38.9
	GTAD	50.4	34.6	9.0	34.1	54.5	40.2	23.4	39.3
	GTAD + GAP	50.8	34.9	9.2	34.4	55.0	40.5	23.8	39.6
Anchor-Free	DCAN	51.8	35.9	9.4	35.4	68.2	54.1	32.6	-
Anchor-Free	DCAN + GAP	52.4	36.4	9.6	35.8	68.6	54.6	33.0	-
	RTDNet	47.2	30.7	8.6	30.8	68.3	51.9	23.7	-
	RTDNet + GAP	47.7	31.1	8.8	31.2	68.8	52.3	24.2	-
	AFSD	52.4	35.3	6.5	34.4	67.3	55.5	31.1	52.0
	AFSD + GAP	53.0	35.9	7.1	34.8	68.0	56.1	31.5	52.5
	ActionFormer	53.5	36.2	8.2	35.6	82.1	71.0	43.9	66.8
	ActionFormer + GAP	53.9	36.4	8.5	36.0	82.3	71.4	44.2	66.9
	React	-	-	-	-	69.2	57.1	35.6	55.0
	React + GAP	-	-	-	-	69.5	57.3	35.7	55.2
Dronocol Erro	TAGS	56.3	36.8	9.6	36.5	68.6	57.0	31.8	52.8
Proposal-Free	TAGS + GAP	56.7	37.2	9.8	36.7	69.1	57.4	32.0	53.0

SOTA on standard benchmarks Like THUMOS14 and ActivityNet

GAP Also Improves on Any-Shot/ Any-Supervision Action Detection

Model	mAP						
Model	0.3	0.4	0.5	0.6	0.7	Avg	
ASL [5]	51.8	-	31.1	-	11.4	32.2	
ASL [5] + GAP	53.0	-	31.7	-	11.5	32.4	
CoLA [13]	51.5	41.9	32.2	22.0	13.1	40.9	
CoLA [13] + GAP	51.8	42.2	32.4	22.2	13.2	41.0	
TS-PCA [4]	52.4	43.5	34.6	23.7	12.6	-	
TS-PCA [4] + GAP	52.9	44.0	34.9	24.0	12.8	-	
CO2-Net [3]	54.5	45.7	38.3	26.4	13.4	-	
CO2-Net [3] + GAP	54.9	46.0	38.8	27.1	14.0	-	
ASM-Loc [2]	57.1	46.8	36.6	25.2	13.4	45.1	
ASM-Loc [2] + GAP	58.1	47.5	37.1	25.6	13.8	45.5	
DELU [1]	56.5	47.7	40.5	27.2	15.3	46.4	
DELU [1] + GAP	57.0	48.1	40.9	27.6	15.5	46.6	

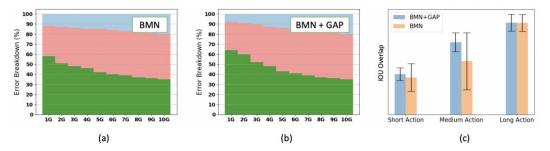
GAP on Weakly Supervised Setting

GAP on Few-Shot Setting

Shot	Models	mAP				
		0.5	0.7	0.9	Avg	
1	QAT [10]	44.9	29.2	11.2	25.9	
1	QAT [10] + GAP	45.8	30.0	11.8	26.5	
5	QAT [10]	51.8	32.6	11.9	30.2	
5	QAT [10] + GAP	52.2	32.9	12.1	30.4	

GAP on Zero-Shot Setting

Models	mAP					
widueis	0.5	0.75	0.95	Avg		
Baseline	28.0	16.4	1.2	16.0		
Baseline [†] + GAP	28.7	16.8	1.7	16.5		
Baseline + GAP	28.2	16.6	1.3	16.2		
STALE [9]	32.1	20.7	5.9	20.5		
STALE [9] + GAP	32.4	21.1	6.2	20.8		



GAP is effective when Temporal Resolution is Small

Method	Temporal	mAP			
Methou	Resolution	0.5	0.75	0.95	Avg
BMN [9]	25	44.7	27.9	7.0	28.1
BMN+GAP	25	45.5	28.4	7.3	28.5
BMN	100	50.1	34.8	8.3	33.9
BMN+GAP	100	50.5	35.2	8.6	34.3
BMN	400	50.9	34.9	8.1	34.0
BMN+GAP	400	51.1	35.0	8.2	34.1

As **Temporal Resolution is Low**, **More Chances of Ambiguity** among Action Boundaries

GAP is effective in such scenarios

As **Temporal Resolution Increases**, Duration per snippet increases, **Ambiguity reduces**

GAP is less effective in such scenarios

Error-Sensitivity Analysis shows that

GAP does not bottleneck efficiency

Method	Inference Time	Speed	
AFSD [8]	0.29 sec	1931 FPS	
AFSD + GAP	0.31 sec	1792 FPS	

GAP does not learn any extra parameters.

GAP may slightly increase the training time but negligible.

GAP has almost negligible effect on inference time.

Thank You for Listening

For any questions, contact : s.nag@surrey.ac.uk

Scan the QR Code for Code

