Vita-clip: Video and text adaptive clip via multimodal prompting

¹Syed Talal Wasim ¹Muzammal Naseer ^{1,2}Salman Khan ^{1,3}Fahad Shahbaz Khan ⁴Mubarak Shah ¹Mohamed Bin Zayed University of AI, ²Australian National University, ³Linköping University, ⁴University of Central Florida

CVPR 2023 ID: THU-PM-232

Presenter: Syed Talal Wasim

Research Assistant, Department of Computer Vision, Mohamed Bin Zayed University of AI (MBZUAI)

Challenges

- Trade-off in adopting Image Language models to Videos
 - Finetuning the backbone reduces zeroshot performance
 - Frozen backbone results in poor supervised performance
- State-of-the-art methods such as XCLIP tend to have separate training schemes for supervised and zeroshot settings
 - Essentially two different models!!!
 - Might as well have separate models for supervised/zeroshot

Solution Overview

- Freeze CLIP backbone
 - Retain pretrained generalization
- Introduce prompts on vision and text encoders
 - Frame-level prompts to model per-frame information
 - Summary prompt to summarize information across the video-clip
 - Video-level prompts to model the data distribution
 - Textual prompts to enhance text description

Background

- Contrastive Language Image Pretraining (CLIP)
 - Pretrained on 400M image-text pair
 - Strong generalization and zeroshot capabilities
- Motivation for adapting CLIP to Videos
 - Lack of video-language data
 - Much larger computational requirements
 - Existing methods XCLIP, ActionCLIP

Challenges

- Trade-off in adopting Image Language models to Videos
 - Finetuning the backbone reduces zeroshot performance
 - Frozen backbone results in poor supervised performance

- State-of-the-art methods such as XCLIP tend to have separate training schemes for supervised and zeroshot settings
 - Essentially two different models!!!
 - Might as well have separate models for supervised/zeroshot

Problem Formulation

Method	Epochs	Frames	K400 Supervised	HMDB51 Zeroshot	UCF101 Zeroshot	Trainable Parameters
XCLIP (Supervised)	30	8	82.3	41.4	67.9	131.5 M
XCLIP (Zeroshot)	10	32	78.2	44.6	72.0	131.5 M

• Can we build a single model under a unified training scheme?

Methodology

• Freeze the backbone to retain CLIP generalization

• Introduce multimodal prompts to improve representation towards new dataset

• Condition prompts to model temporal information

Methodology

- Visual prompts at three levels of granularity
 - Local prompts to model frame-level information
 - Summary prompts to model a summarized representation across frames
 - Global prompts to model dataset distribution
- Textual prompts to enhance text representation

Methodology

Results

Method	Epochs	Frames	K400 Supervised	HMDB51 Zeroshot	UCF101 Zeroshot	Trainable Parameters
XCLIP (Supervised)	30	8	82.3	41.4	67.9	131.50 M
XCLIP (Zeroshot)	10	32	78.2	44.6	72.0	131.50 M
Vita-CLIP (Unified)	30	8	80.5	48.6	75.0	38.88 M

Conclusion

- We propose a *unified* model for both supervised and zeroshot settings
- We achieve state-of-the-art zeroshot performance, while still comparable in supervised setting

• We optimize a much smaller number of parameters

Thank You

