

THU-AM-309

Multiclass Confidence and Localization Calibration for Object Detection

Bimsara Pathiraja, Malitha Gunawardhane, Muhammad Haris Khan

Mohamed Bin Zayed University of Artificial Intelligence, UAE

Motivation

Deep neural networks (DNNs) are poorly calibrated

- Existing attempts for calibration:
- ✤ are limited to classification tasks
- restricted to calibrating in-domain predictions
- ✤ Little attention toward calibrating object detectors:
- pivotal space in vision-based security-sensitive and,
- ✤ safety-critical applications.

Motivation

DNN-based object detectors are:

- 1. inherently miscalibrated for in-domain and out-domain predictions
- 2. image classification-based calibration methods are **sub-optimal** for object detection

Existing paradigms in calibrating DNNs

Few parameters for calibration Feature Detection Feature Detection Post-Extractor Car Head Car Extractor Head Hoc Many Trainable parameters Freeze

Train-time

- Hold-out validation set to learn calibration parameters
- Calibration is based on few parameters

- All model parameters are engaged
- No hold-out validation set is required

Post-hoc

- Study relatively unexplored direction of calibrating object detectors
- Propose a new train-time calibration method (MCCL)
- Featuring an auxiliary loss term
- ✤ Jointly calibrates multiclass confidences and bounding box localization
- Differentiable, operates on mini-batches
- * Extensive experiments on challenging datasets, featuring several in-domain and out-of-domain scenarios.

Uncertainty quantification

Monte-Carlo Dropout to estimate the following:

$$\mathbf{c}_n \in \mathbb{R}^K$$

Class-wise certainty

$$ar{\mathbf{s}}_n \in \mathbb{R}^K$$

Mean logits-based class-wise confidence

$$igl(ar{\mathbf{b}}_n\in[0,1]^4igr)$$

 g_n

Mean bounding box parameters

Certainty in bounding box localization

Multi-class confidence calibration

$$\mathbf{v}_{l,n}[k] = (\bar{\mathbf{s}}_{l,n}[k] + \mathbf{c}_{l,n}[k])/2$$

Multiclass fusion of mean confidence and certainty

$$\mathcal{L}_{MCC} = \frac{1}{K} \sum_{k=1}^{K} \left| \frac{1}{M} \sum_{l=1}^{N_b} \sum_{n=1}^{N_{pos}} \mathbf{v}_{l,n}[k] - \frac{1}{M} \sum_{l=1}^{N_b} \sum_{n=1}^{N_{pos}} \mathbf{q}_{l,n}[k] \right|$$

Absolute difference between the fused vector and the accuracy

 $M = N_b \times N_{pos}$. N_b : # samples in the minibatch and N_{pos} : # of positive locations. $q_{l,n}[k] = 1$ if k is the ground truth class of bounding box for the *n*th location in the l^{th} sample.

Localization calibration

$$\mathcal{L}_{LC} = \frac{1}{N_b} \sum_{l=1}^{N_b} \frac{1}{N_{pos}^l} \sum_{n=1}^{N_{pos}^l} \left| \left[\text{IoU}(\bar{\mathbf{b}}_{n,l}, \mathbf{b}_{n,l}^*) - g_{n,l} \right] \right|$$

Absolute difference between the bbox overlap (with the ground truth) and the certainty in the bbox prediction

 N_{pos}^{l} : # of positive bounding box regions in the l^{th} sample.

Our auxiliary loss

$$\mathcal{L}_{MCCL-aux} = \mathcal{L}_{MCC} + \beta \mathcal{L}_{LC}$$

✤ Also input mean confidence and mean bounding box parameters to task-specific loss

In-domain calibration performance

In-domain performance										
Methods	Sim10K		KITTI		CS		COCO		VOC	
	D-ECE	AP@0.5	D-ECE	AP@0.5	D-ECE	AP@0.5	D-ECE	AP@0.5	D-ECE	mAP
Baseline (FCOS)	12.90	87.45	9.54	94.54	9.40	70.48	15.42	54.91	11.88	59.68
Ours (MCCL)	11.18	86.47	7.79	93.76	7.64	70.22	14.94	54.85	6.02	59.17

Out-domain calibration performance

Out-of-domain performance										
Methods	$Sim10K \rightarrow CS$		$KITTI \rightarrow CS$		$CS \rightarrow CS-F$		$COCO \rightarrow Cor-COCO$		$CS \rightarrow BDD100K$	
	D-ECE	AP@0.5	D-ECE	AP@0.5	D-ECE	AP@0.5	D-ECE	AP@0.5	D-ECE	AP@0.5
Baseline (FCOS)	9.51	45.18	7.53	38.11	11.18	19.81	15.90	30.01	18.82	14.18
Ours (MCCL)	6.60	44.30	6.43	38.73	8.97	19.54	14.45	29.96	16.12	14.20

	(Out-of-doma	ain performan	ce		
Methods	$VOC \rightarrow$	clipart	$VOC \rightarrow v$	vatercolor	$VOC \rightarrow comic$	
	D-ECE	mAP	D-ECE	mAP	D-ECE	mAP
Baseline (FCOS)	1.54	14.57	3.23	24.23	3.75	9.89
Ours (MCCL)	1.06	13.71	2.33	28.70	2.84	11.50

Overcoming under/overconfidence

Our MCCL can effectively overcome overconfidence and underconfidence

Impact on location-dependent calibration

Our MCCL can decrease D-ECE at all image locations including image boundaries

Conclusion

Goal: Calibrating object detectors

Approach: A train-time method for calibrating multiclass confidence and box localization.

Promising results:

- Several in-domain and out-domain scenarios
- CNNs and DETR-based detectors
- Effective for location-dependent calibration

Thank you for listening!

