

Continual Detection Transformer for Incremental Object Detection

Poster ID: THU-PM-305

Yaoyao Liu¹

Bernt Schiele¹

Andrea Vedaldi²

Christian Rupprecht²

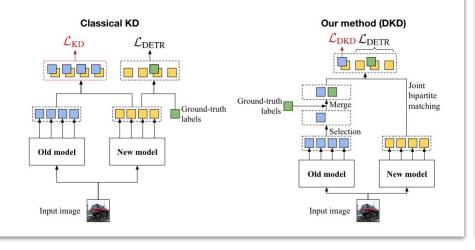
¹Max Planck Institute for Informatics ²Visual Geometry Group, University of Oxford

Quick preview: continual detection transformer

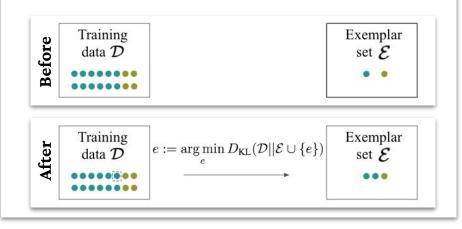
Task: incremental object detection (IOD)

i.e., learning a detector from a **continual data stream** with **limited memory**

• How to remove the influence of the background? idea: selecting the most-confident non-background predictions as pseudo labels



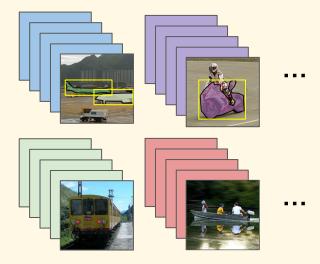
 How to select an exemplar set following the original distribution? idea: minimizing the KL divergence between the training set and exemplar set



Task: incremental object detection (IOD)

COCO: 80 classes, ~100k images, 10-phase

Phase 1 10k images, 8 classes labeled

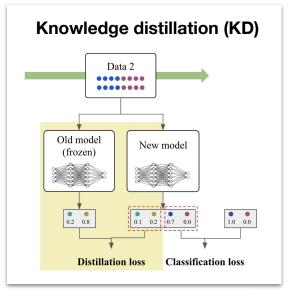


Phase 2 10k new images, 8 new classes labeled

. . .

Evaluation: Test for **8** classes Evaluation: Test for **16** classes

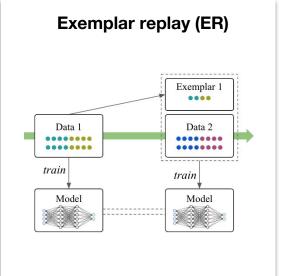
What is the toolbox we have for incremental learning (classification)?



Basic idea: encourage the new model's predictions or feature maps to be close to those of the old model

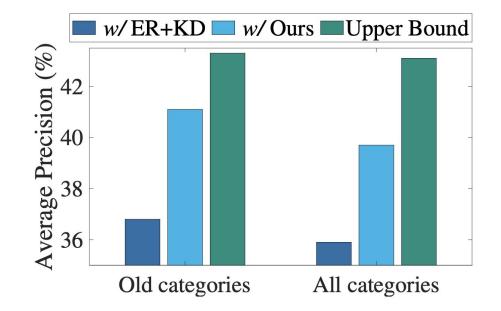
Reference

Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
Liu, Yaoyao, et al. "Mnemonics training: Multi-class incremental learning without forgetting." CVPR 2020.
Wang, Liyuan, et al. "Memory Replay with Data Compression for Continual Learning." ICLR 2022.



Basic idea: replaying a **small subset** of **the old data** in the following phases

Can we directly apply our toolbox to object detection?

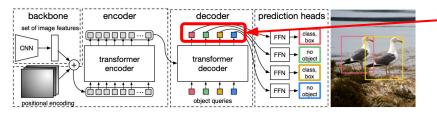


MS COCO, 2-phase, baseline: Deformable DETR

Why KD and ER don't work well on object detection?

• Problem 1: the problem of KD:

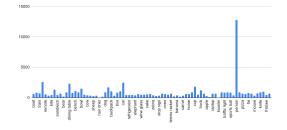
The KD loss is **dominated** by the **background** information



Too many predictions (~300)

• Problem 2: the problem of ER:

The heuristic ER methods **change** the **original** category **distribution** of the training set.



How do we solve these problems?

• Problem 1: the problem of KD: The KD loss is dominated by the background information

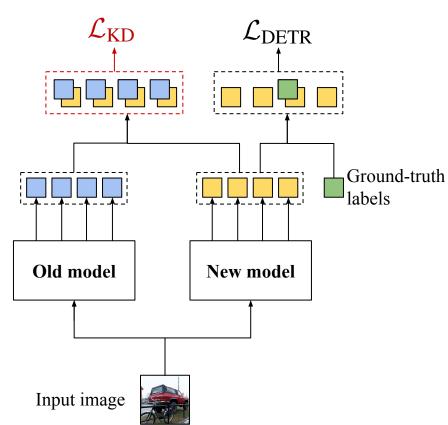
Our solution: **removing** the **influence** of the **background** information

• Problem 2: the problem of ER:

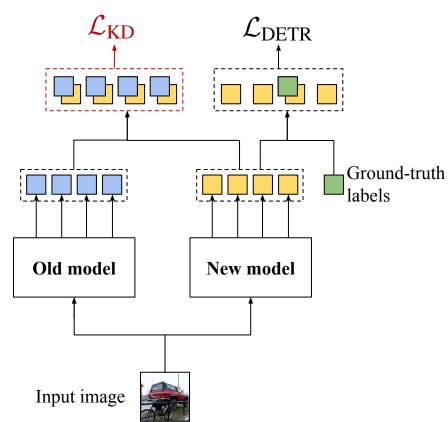
The heuristic ER methods **change** the **original** category **distribution** of the training set.

Our solution: selecting an **exemplar set** that **follows the original distribution**

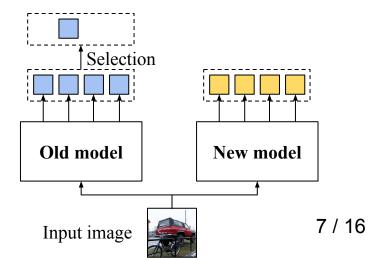
For problem 1: how to remove the influence of the background? Classical KD



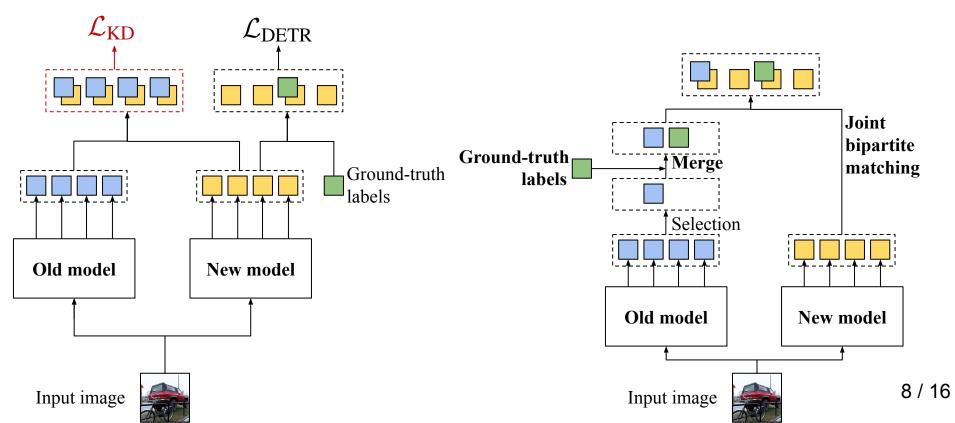
For problem 1: how to remove the influence of the background? Classical KD Our method (DKD)



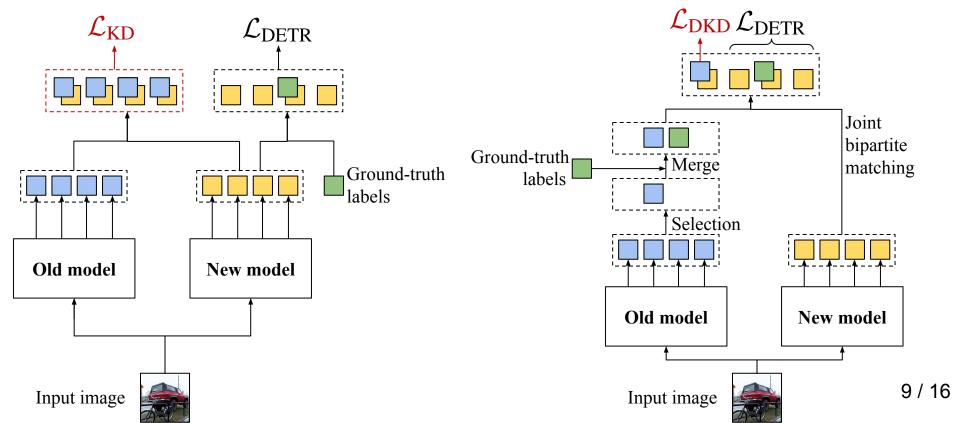
Select the most confident non-background predictions



For problem 1: how to remove the influence of the background? Classical KD Our method (DKD)



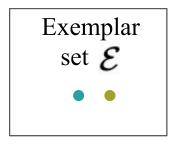
For problem 1: how to remove the influence of the background? Classical KD Our method (DKD)



For problem 2: how to select an exemplar set that follows the original distribution?

Idea: minimizing the Kullback-Leibler divergence between the training set and exemplar set

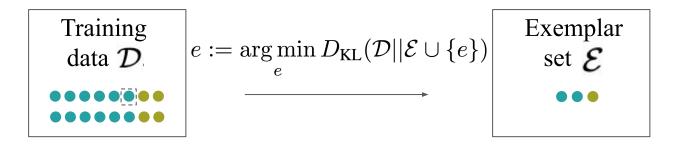
When we need to select a new exemplar



For problem 2: how to select an exemplar set that follows the original distribution?

Idea: minimizing the Kullback-Leibler divergence between the training set and exemplar set

When we need to select a new exemplar



Ablation study: our method vs. classical KD & ER

Our KD Method

Our ER Method												
Knowledge distillation		Pseudo label	-	Distribution	All categories ↑			Old categories \uparrow				
(KD)	matching		replay (ER)	preserving calibration	AP	AP_S	AP_M	AP_L	AP	AP_S	AP_M	AP_L
					4.2	1.6	4.7	5.8	0.7	0.2	0.8	0.8
\checkmark					24.5	12.4	28.2	35.2	24.0	12.3	27.7	34.4
\checkmark	\checkmark				30.3	19.5	33.0	39.0	33.4	21.8	36.4	43.2
\checkmark	\checkmark	\checkmark			33.9	16.3	37.1	49.2	33.9	16.6	36.8	50.0
\checkmark	\checkmark	\checkmark	\checkmark		37.9	20.8	40.9	50.4	39.0	21.6	41.7	52.3
\checkmark	\checkmark	\checkmark		\checkmark	40.1	23.2	43.2	52.1	41.8	24.5	44.7	54.6

Observation: our KD & ER achieve better performance than classical KD & ER

Insight: our design makes KD and ER perform better on object detection tasks

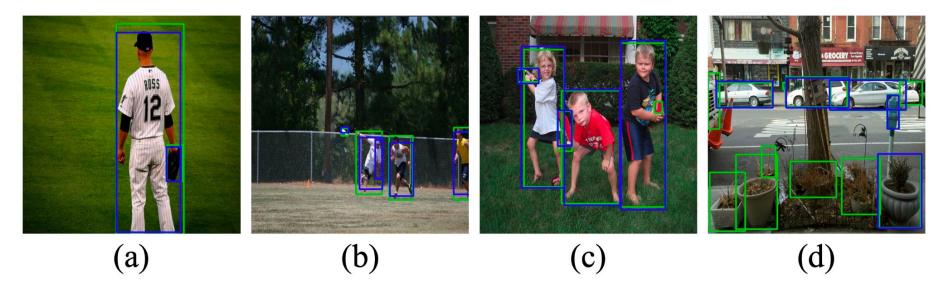
Results: our method + different object detection frameworks

Method	Detection baseline	AP	AP_{50}	AP_{75}
ERD [13]	UP-DETR	36.2 ± 0.3	$54.8_{\pm0.4}$	$39.3{\scriptstyle \pm 0.4}$
CL-DETR (ours)	UP-DETR	37.6 ± 0.2	$56.5{\scriptstyle \pm 0.4}$	39.4 ± 0.3
LwF [27]	Deformable DETR	$24.5{\scriptstyle\pm0.3}$	$36.6{\scriptstyle \pm 0.2}$	$26.7{\scriptstyle \pm 0.4}$
iCaRL [42]	Deformable DETR	$35.9{\scriptstyle \pm 0.4}$	$52.5{\scriptstyle \pm 0.3}$	39.2 ± 0.3
ERD [13]	Deformable DETR	$36.9{\scriptstyle \pm 0.4}$	$55.7{\scriptstyle\pm0.4}$	$40.1{\scriptstyle \pm 0.4}$
CL-DETR (ours)	Deformable DETR	40.1 \pm 0.3	57.8 ± 0.4	$\textbf{43.7}_{\pm 0.3}$

Observation: our method can improve different DETR-based architectures

Insight: our method is generic to different DETR-based methods

Visualizations: our pseudo labels vs. ground-truth labels



Visualizations of the old category pseudo (blue) and ground-truth (green) bounding boxes on COCO 2017

Summary: our contributions

(1) The DKD loss

resolving conflicts between distilled knowledge and new evidence and by ignoring redundant background detections

(2) A calibration strategy for ER

matching the stored exemplars to the training set distribution

(3) A revised IOD benchmark protocol

avoiding observing the same images in different training phases;

(4) Extensive experiments

including state-of-the-art results, an in-depth ablation study, and further visualizations.

Thanks!

Continual Detection Transformer for Incremental Object Detection

Webpage: <u>https://lyy.mpi-inf.mpg.de/CL-DETR/</u>

Code: https://github.com/yaoyao-liu/CL-DETR

