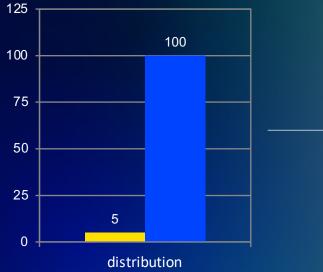
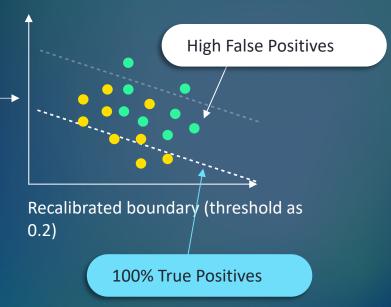


Ranking Regularization for Critical Rare Classes: Minimizing False Positives at a High True Positive Rate

Kiarash Mohammadi ^{1,2}, He Zhao¹, Mengyao Zhai¹, Frederick Tung¹

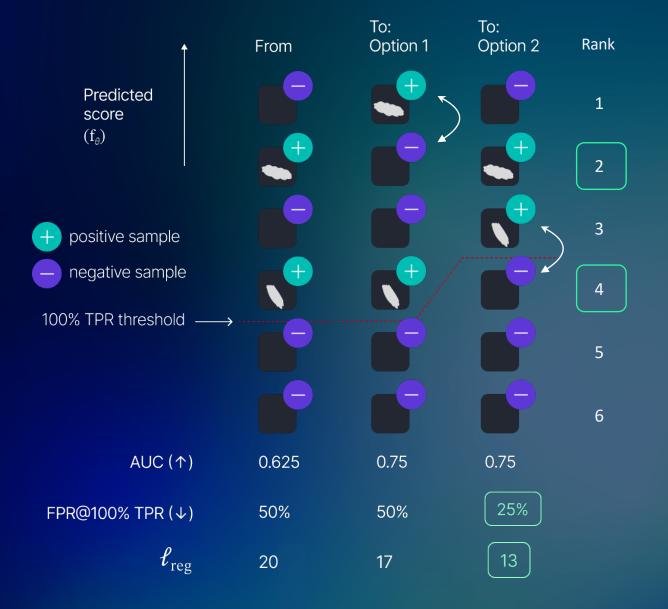

1. Borealis Al 2. University of Montreal



Problem

- → Imbalanced distribution
- Missing the critical class has a
 disproportionately high cost, e.g,
 Cancer diagnosis or
 fraud detection
- Current solution obtains high TPR at the cost of high FPR.

- Critical Rare (e.g., cancer diagnosis)
- Non-critical Common



Proposed Regularization Method

The regularization term is then defined as:

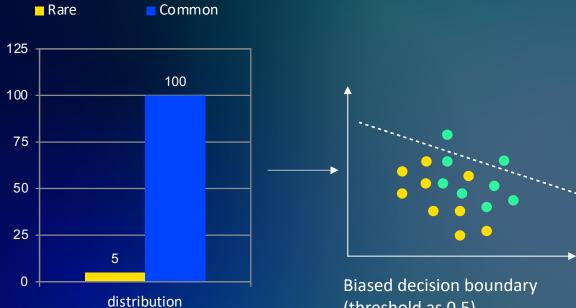
$$R(heta) = rac{1}{|P|} \sum_{oldsymbol{i}=1}^{M} oldsymbol{r_i^2} \cdot 1\!\!1[y_oldsymbol{i}=1]$$

Experiment results

	Binary CIFAR10, imb. 1:100					
Methods	FPR@↓ 98%TPR	FPR@↓ 95%TPR	FPR@↓ 92%TPR	AUC ↑		
BCE	56.0	45.0	29.0	91.2		
+ALM	52.0	34.0	21.0	93.1		
+RankReg	<u>47.1</u>	<u>26.2</u>	<u>20.6</u>	94.3		
S-ML	59.0	40.0	26.0	91.7		
+ALM	50.0	37.0	24.0	92.5		
+RankReg	<u>45.6</u>	<u>31.4</u>	29.7	93.9		
S-FL	59.0	40.0	27.0	91.7		
+ALM	55.0	39.0	25.0	91.5		
+RankReg	<u>53.3</u>	<u>35.4</u>	20.7	92.8		
A-ML	54.0	36.0	23.0	92.4		
+ALM	45.0	35.0	23.0	92.8		
+RankReg	47.8	28.9	<u>21.4</u>	94.1		
A-FL	50.0	38.0	24.0	92.3		
+ALM	<u>49.0</u>	37.0	23.0	92.8		
+RankReg	50.5	28.7	20.9	94.3		
CB-BCE	89.0	72.0	59.0	78.0		
+ALM	67.0	51.0	36.0	88.1		
+RankReg	48.8	<u>29.9</u>	24.6	93.2		
W-BCE	69.0	52.0	37.0	87.4		
+ALM	66.0	48.0	31.0	89.3		
+RankReg	<u>60.0</u>	<u>39.4</u>	<u>29.6</u>	92.1		
LDAM	65.0	48.0	34.0	89.0		
+ALM	60.0	42.0	31.0	91.0		
+RankReg	<u>42.8</u>	25.6	23.8	95.0		
Avg. Δ	6.0	9.7	2.8	2.3		

	Melanoma, imb. 1:170						
Methods	FPR@↓ 98%TPR	FPR@↓ 95%TPR	FPR@↓ 92%TPR	FPR@↓ 90%TPR	AUC		
BCE	49.8	45.9	38.6	35.5	85.7		
+ALM	49.9	41.8	40.0	37.7	85.6		
+RankReg	<u>49.4</u>	<u>37.9</u>	<u>33.9</u>	<u>31.6</u>	86.8		
S-ML	<u>46.6</u>	42.8	38.4	37.4	85.3		
+ALM	51.3	<u>40.5</u>	39.8	36.2	83.5		
+RankReg	54.6	42.4	<u>36.1</u>	<u>34.4</u>	86.3		
S-FL	59.0	47.3	44.4	39.5	83.8		
+ALM	47.8	42.7	39.2	38.1	84.0		
+RankReg	56.6	<u>37.8</u>	<u>31.2</u>	<u>29.8</u>	86.1		
A-ML	47.5	42.9	40.4	36.6	85.4		
+ALM	51.0	41.5	37.5	37.1	83.7		
+RankReg	58.3	<u>40.8</u>	<u>36.7</u>	<u>33.9</u>	86.2		
A-FL	55.6	45.0	42.7	41.2	84.4		
+ALM	49.0	42.4	40.1	38.1	83.6		
+RankReg	<u>48.0</u>	<u>36.2</u>	<u>30.7</u>	<u>28.8</u>	86.3		
W-BCE	69.0	52.0	37.0	32.1	87.4		
+ALM	66.0	48.0	<u>31.0</u>	30.7	89.3		
+RankReg	56.4	<u>41.1</u>	33.0	<u>30.5</u>	90.9		
LDAM	<u>59.7</u>	48.2	46.2	<u>39.0</u>	83.4		
+ALM	62.7	47.7	<u>43.3</u>	40.7	81.5		
+RankReg	65.6	47.5	45.7	43.9	81.7		

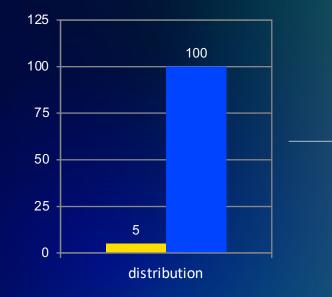
Outline

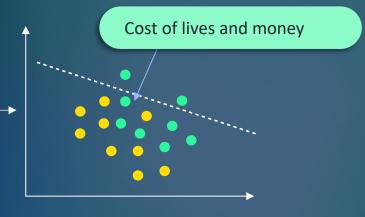

→ Problem and Motivation

- → Proposed ranking regularization
- → Experiment details and Results

Problem

→ Imbalanced distribution

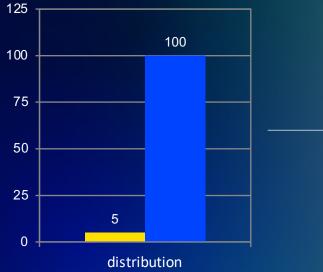

(threshold as 0.5).

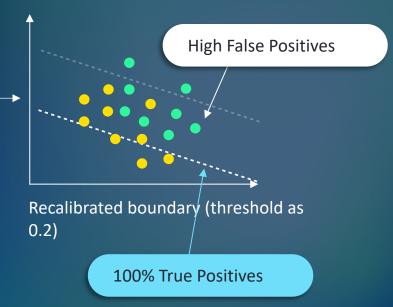


Problem

- \rightarrow Imbalanced distribution
- Missing the critical class has a disproportionately high cost, e.g,
 Cancer diagnosis or
 - fraud detection

- Critical Rare (e.g., cancer diagnosis)
- Non-critical Common


Biased decision boundary (threshold as 0.5).

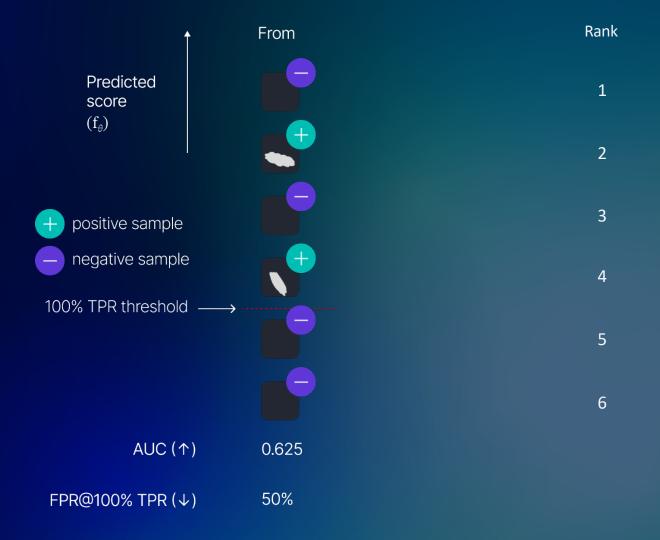


Problem

- → Imbalanced distribution
- Missing the critical class has a
 disproportionately high cost, e.g,
 Cancer diagnosis or
 fraud detection
- Current solution obtains high TPR at the cost of high FPR.

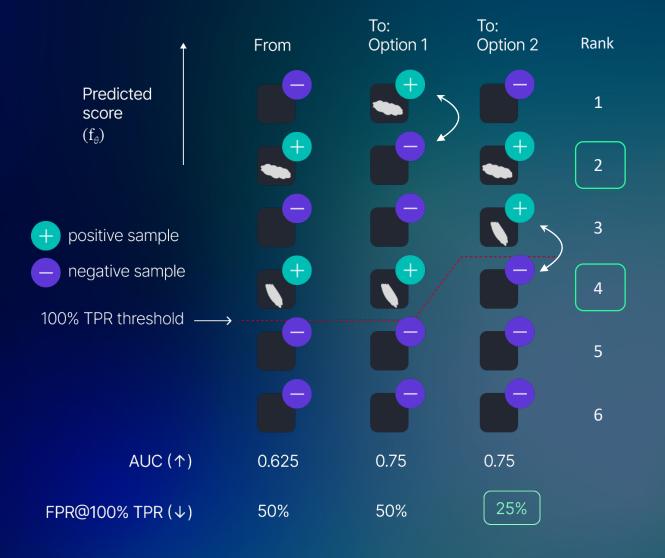
- Critical Rare (e.g., cancer diagnosis)
- Non-critical Common

Outline


→ Problem and Motivation

→ Proposed ranking regularization

→ Experiment details and Results



Proposed Regularization Method

Proposed Regularization Method

Proposed Regularization Method

The regularization term is then defined as:

$$R(heta) = rac{1}{|P|} \sum_{oldsymbol{i}=1}^{M} oldsymbol{r_i^2} \cdot 1\!\!1[y_oldsymbol{i}=1]$$

Proposed Regularization Method

There's a problem!

Ranking function gradients are zero almost everywhere

 $\mathbf{rk}(\mathbf{a})_j = 1 + |\{k : \mathbf{a}_k > \mathbf{a}_j\}|$ $\mathbf{r} = \mathbf{rk}([0.3, 0.1, 0.7, 0.6, 0.8]) = [4, 5, 2, 3, 1]$

How to get meaningful gradients?

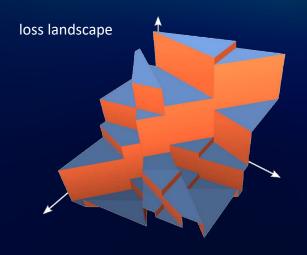
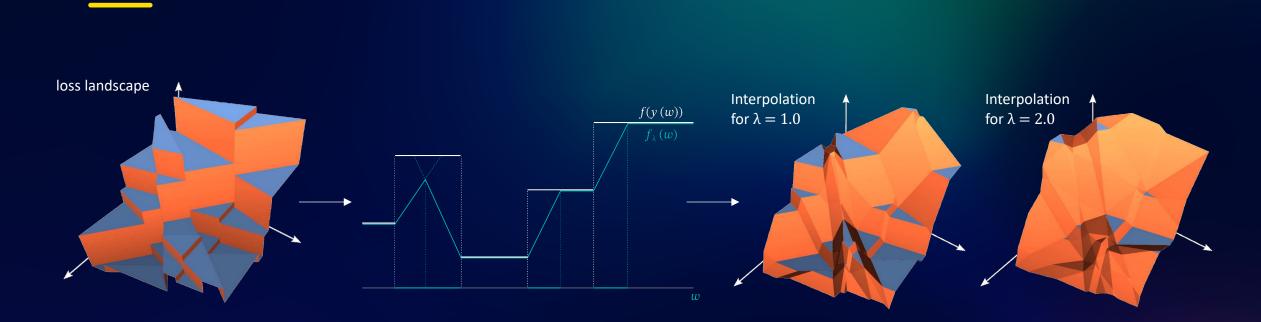



Figure from Michal, et al., *Optimizing Rankbased Metrics with Blackbox Differentiation*, CVPR'20

Blackbox Differentiation of Combinatorial Solvers

1. Figure from Marin, et al., Differentiation of blackbox combinatorial solvers, ICLR'20

2. Figure from Michal, et al., Optimizing Rank-based Metrics with Blackbox Differentiation, CVPR'20

Outline

→ Problem and Motivation

→ Proposed ranking regularization

→ Experiment details and Results

Experiment details

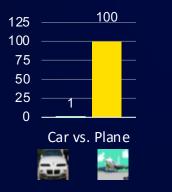
Using *RankReg* with eight different base loss functions, as

→ Base loss varies from production to production.

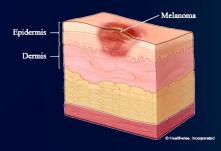
 \rightarrow Sensitivity test.

Baseline methods. Following previous method [24], we consider applying our proposed regularizer with several different existing loss functions, most of which have been designed to handle class imbalance: binary cross-entropy (BCE), symmetric margin loss (S-ML) [20], symmetric focal loss (S-FL) [18], asymmetric margin loss (A-ML) and focal loss (A-FL) [17], cost-weighted BCE (WBCE) [35], class-balanced BCE (CB-BCE) [8], and label distribution aware margin (LDAM) [4].

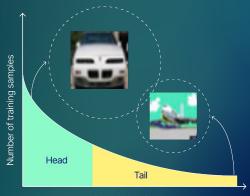
$$\arg\min_{\theta} F(\theta) + \alpha \cdot R(\theta)$$


$$\uparrow$$

$$RankReg$$

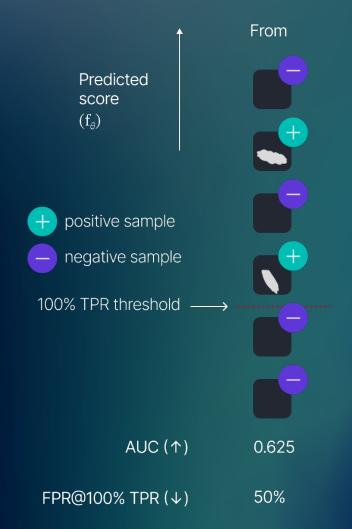


Experiment details: Datasets


- \rightarrow We compare against the state-of-the-art method, ALM*.
- → Datasets:
- → Imbalanced CIFAR10/100 datasets
- → Curated imbalanced version
- → Ratios: 1 vs. 100 / 200

- → Melanoma dataset
- → Skin cancer classification
- → Naturally imbalanced
- → Ratio: 1 vs. 170

- → Long-Tailed (LT) CIFAR
- → Multi-class classification


Sorted class index

Experiment details: Metrics

\rightarrow We compare evaluate on the following metrics

- \rightarrow False Positives Rate at 98% True Positive Rate
- → False Positives Rate at 95% True Positive Rate
- \rightarrow False Positives Rate at 92% True Positive Rate
- → False Positives Rate at 90% True Positive Rate (Optional)
- → Area Under ROC Curve (AUC)

Experiment results: CIFAR10

Ratio 1 vs. 100

Binary CIFAR10, imb. 1:100 Methods $FPR@\downarrow$ FPR@↓ FPR@↓ AUC ↑ 98%TPR 95%TPR 92%TPR BCE 91.2 56.0 45.0 29.0 +ALM 52.0 34.0 21.0 93.1 +RankReg 47.1 26.2 20.6 94.3 S-ML 59.0 40.0 26.0 91.7 92.5 +ALM 50.0 37.0 24.0 +RankReg 45.6 31.4 29.7 93.9 🗲 S-FL 59.0 40.0 27.0 91.7 91.5 +ALM 55.0 39.0 25.0 +RankReg 53.3 35.4 20.7 92.8 A-ML 54.0 36.0 23.0 92.4 92.8 +ALM 45.0 35.0 23.0 47.8 28.9 94.1 +RankReg 21.4 92.3 50.0 38.0 A-FL 24.0 +ALM 49.0 37.0 23.0 92.8 94.3 +RankReg 50.5 28.7 20.9 89.0 78.0 CB-BCE 72.0 59.0 +ALM 67.0 51.0 36.0 88.1 29.9 93.2 +RankReg 48.8 24.6 87.4 W-BCE 69.0 52.0 37.0 +ALM 66.0 48.0 31.0 89.3 92.1 +RankReg 60.0 39.4 29.6 LDAM 65.0 48.0 34.0 89.0 +ALM 60.0 42.0 31.0 91.0 +RankReg 42.8 25.6 23.8 95.0 6.0 9.7 2.8 2.3 ► Avg. ∆

RankReg improves AUCs when coupling with base losses.

RankReg reduce SoTA FPRs by (2-9)% on various TPRs

JUNE 18-22, 2023

Experiment results: Melanoma – Ratio 1 vs. 170

	Melanoma, imb. 1:170						
Methods	FPR@↓ 98%TPR	FPR@↓ 95%TPR	FPR@↓ 92%TPR	FPR@↓ 90%TPR	AUC ⁻		
BCE	49.8	45.9	38.6	35.5	85.7		
+ALM	49.9	41.8	40.0	37.7	85.6		
+RankReg	<u>49.4</u>	<u>37.9</u>	<u>33.9</u>	<u>31.6</u>	86.8		
S-ML	<u>46.6</u>	42.8	38.4	37.4	85.3		
+ALM	51.3	<u>40.5</u>	39.8	36.2	83.5		
+RankReg	54.6	42.4	<u>36.1</u>	<u>34.4</u>	86.3		
S-FL	59.0	47.3	44.4	39.5	83.8		
+ALM	<u>47.8</u>	42.7	39.2	38.1	84.0		
+RankReg	56.6	<u>37.8</u>	<u>31.2</u>	<u>29.8</u>	86.1		
A-ML	47.5	42.9	40.4	36.6	85.4		
+ALM	51.0	41.5	37.5	37.1	83.7		
+RankReg	58.3	<u>40.8</u>	<u>36.7</u>	<u>33.9</u>	86.2		
A-FL	55.6	45.0	42.7	41.2	84.4		
+ALM	49.0	42.4	40.1	38.1	83.6		
+RankReg	<u>48.0</u>	<u>36.2</u>	<u>30.7</u>	<u>28.8</u>	86.3		
W-BCE	69.0	52.0	37.0	32.1	87.4		
+ALM	66.0	48.0	<u>31.0</u>	30.7	89.3		
+RankReg	56.4	<u>41.1</u>	33.0	<u>30.5</u>	90.9		
LDAM	<u>59.7</u>	48.2	46.2	<u>39.0</u>	83.4		
+ALM	62.7	47.7	<u>43.3</u>	40.7	81.5		
+RankReg	65.6	47.5	45.7	43.9	81.7		

Extension on Multi-Class: Long-Tailed (LT) CIFAR

Error@ β %TPR \downarrow	LT-CIFAR10 imb. 100			LT-CIFAR10 imb. 200			
	80%	90%	Acc.	80%	90%	Acc	
CE	29.8	34.7	70.4	37.8	42.4	64.0	
CE+ALM	28.9	33.9	70.9	36.1	39.9	65.1	
CE+RankReg	26.7	29.3	71.6	36.7	37.8	65.0	

Conclusions

- → This paper introduces a general (plug-and-play) method to prioritize the reduction of false positives when the operational context calls for a high true positive rate.
- → Ranking regularizer places an increasing penalty on positive samples the lower they are ranked in a sorted list of the network's classification scores.
- Experimental results show how our regularizer can be combined with a wide range of conventional losses and achieve state-of-theart performance in standard metrics.