Hidden Gems: 4D Radar Scene Flow Learning Using Cross-Modal Supervision

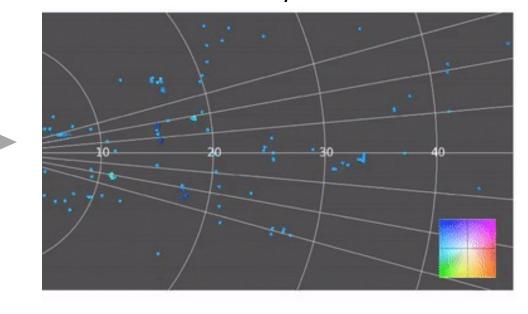
Fangqiang Ding, Andras Palffy, Dariu M. Gavrila, Chris Xiaoxuan Lu

WED-AM-106 (Highlight)

Problem definition

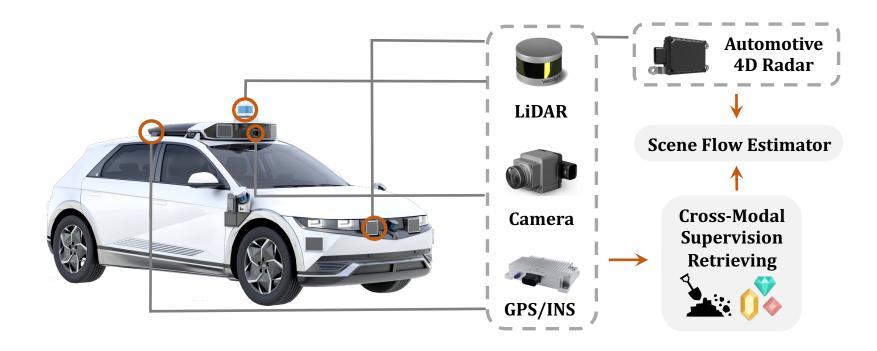
Input (4D radar point clouds) Perspective view

Output (point-level scene flow) Bird's eye view

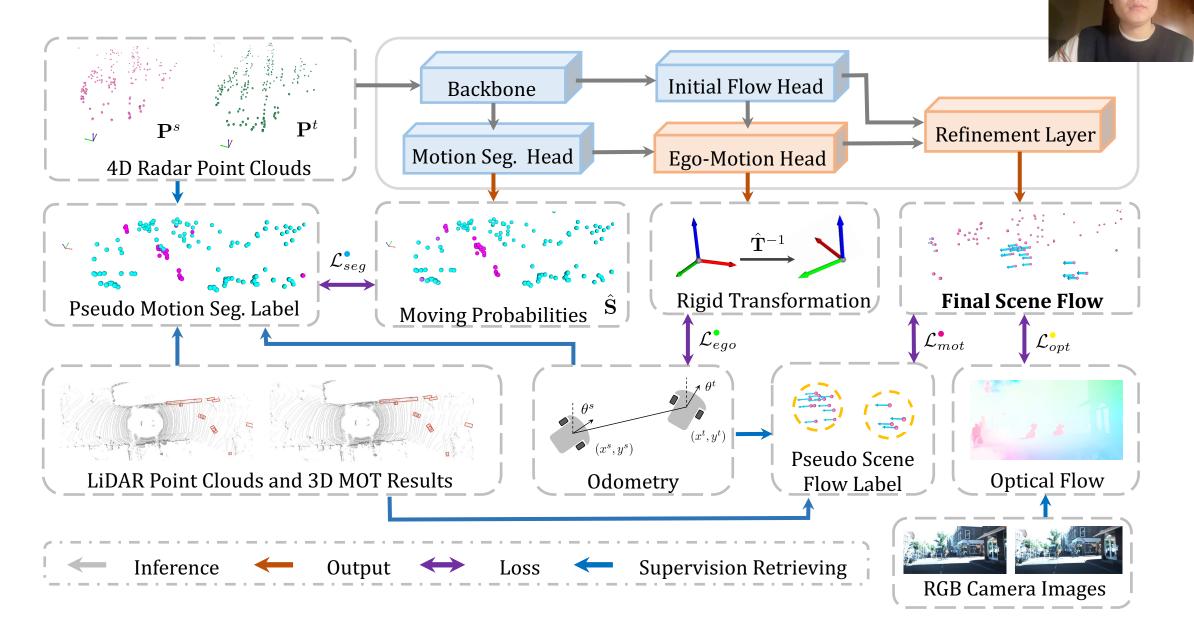


Given consecutive point clouds from 4D radar, we learn to estimate point-level scene flow using cross-modal supervision.

- **Fact**: self-driving cars today are equipped with heterogeneous sensors.
- Insight: such co-located perception redundancy can be used to provide supervision cues that bootstrap 4D radar scene flow learning.

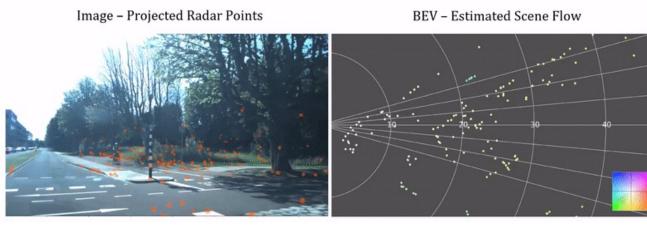


Cross-modal supervised learning pipeline

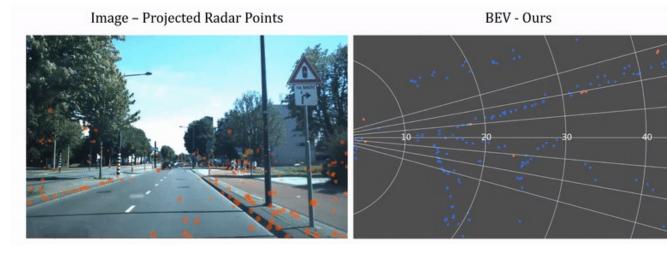


Qualitative results

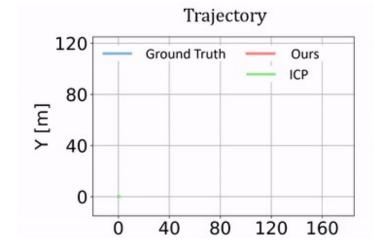
• Scene Flow Estimation

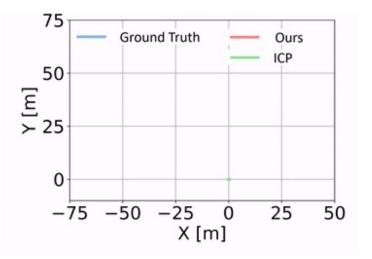


Motion Segmentation



Ego-motion Estimation



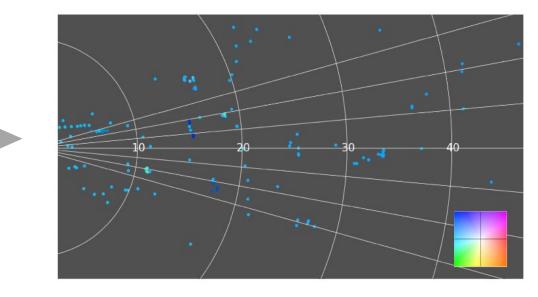


Thanks for watching the quick preview!

Problem definition

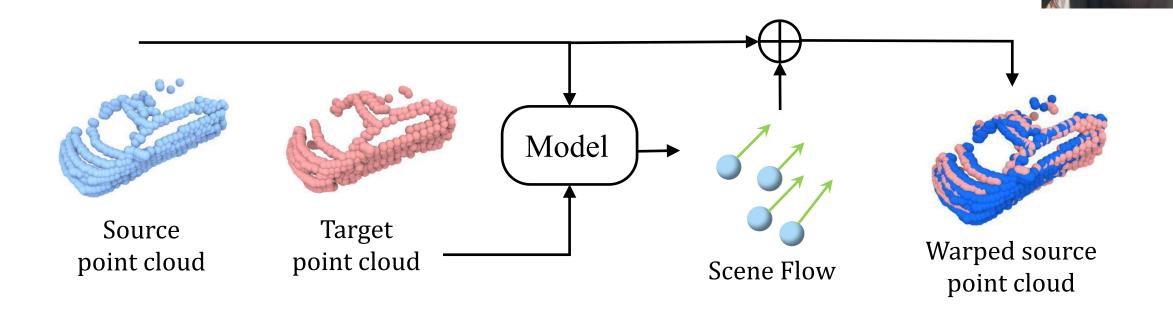
Input (4D radar point clouds) Perspective view

Output (point-level scene flow) Bird's eye view



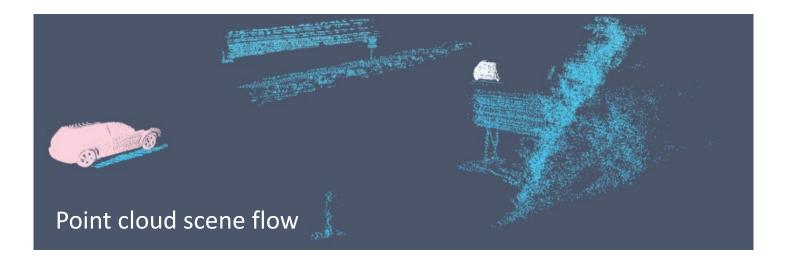
Given consecutive point clouds from 4D radar, we learn to estimate point-level scene flow.

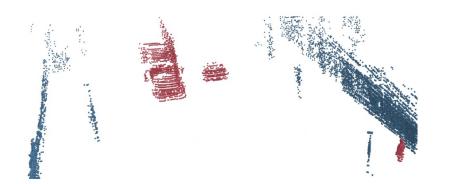
Point Cloud Scene Flow



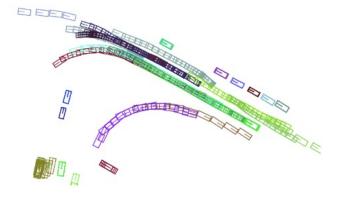
- Represent the 3D inter-frame displacement of each source point
- Induced by the motion of both the ego-vehicle and ambient objects

Downstream tasks

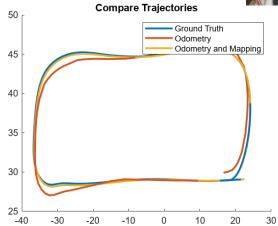




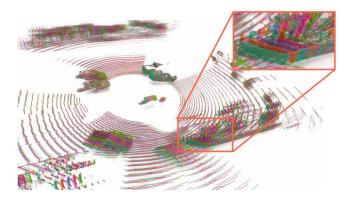
Motion segmentation



Multi-object tracking



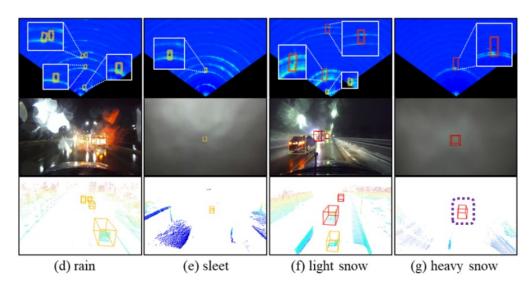
Ego-motion estimation



Point cloud accumulation

4D Automotive Radar

- **Emerging** sensor technology in the automotive industry
- **Robust** to adverse weather and poor illumination conditions
- **4D imaging**: 3D position + 1D doppler velocity measurement
- Radar-on-a-chip: low-cost (vs. LiDAR), small size and lightweight



ARBE 4D RADAR

K-RADAR DATASET

Challenges

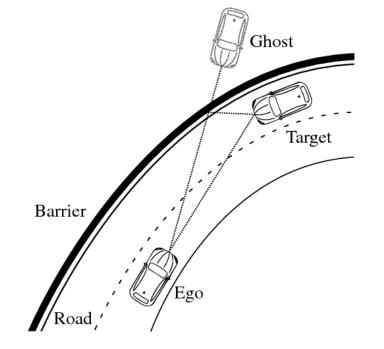
• The acquisition of scene flow annotations are costly. In literature, there is a tradeoff between annotation efforts and model performance.

Strategy	Methods	Supervision	Annotation efforts	performance
Self-supervised	JGWTF, SLIM, RaFlow	None	None	low
Weakly-supervised	WsRSF, Dong et al.	GT BG/FG mask	medium	medium
Fully-supervised	FLOT, FlowStep3D	GT Scene flow	high	high

How to overcome such trade-off, i.e. getting a high performance with low or no annotation efforts?

Challenges

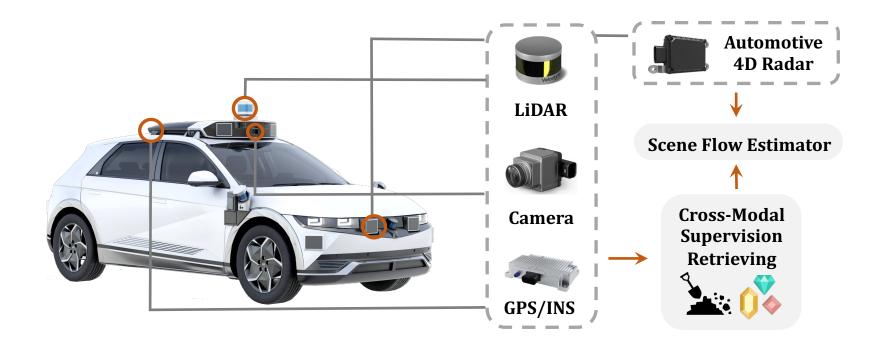
• Radar point clouds suffers from sparsity and noise, which further complicate the scene flow annotation and makes self-supervised based methods unfeasible.



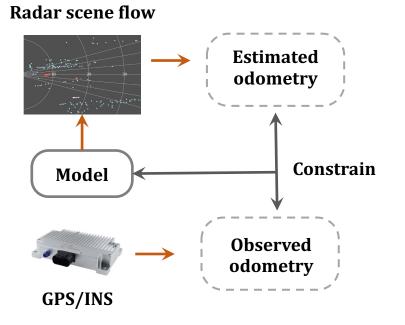
MULTI-PATH EFFECT

LiDAR vs. RADAR

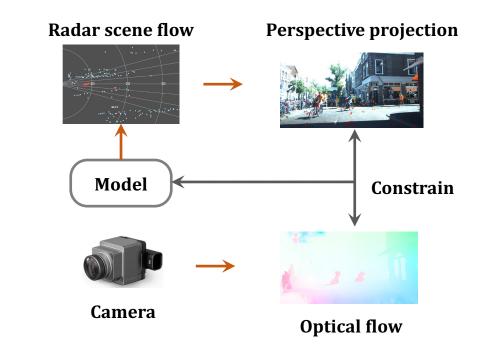
- Fact: self-driving cars today are equipped with heterogeneous sensors.
- **Insight**: such co-located perception redundancy can be used to provide supervision cues that bootstrap 4D radar scene flow learning.



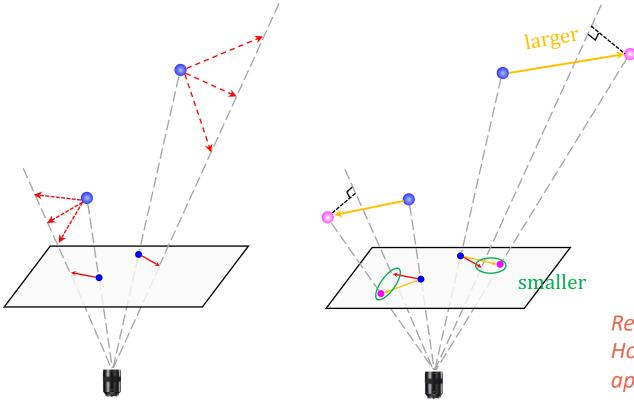
• Example: odometry consistency



• Example: perspective consistency



• Retrieving accurate supervision signals from co-located sensors and effectively use them are non-trivial. For example:



Depth-unaware perspective projection potentially incurs weaker constraints to the scene flow of far points.

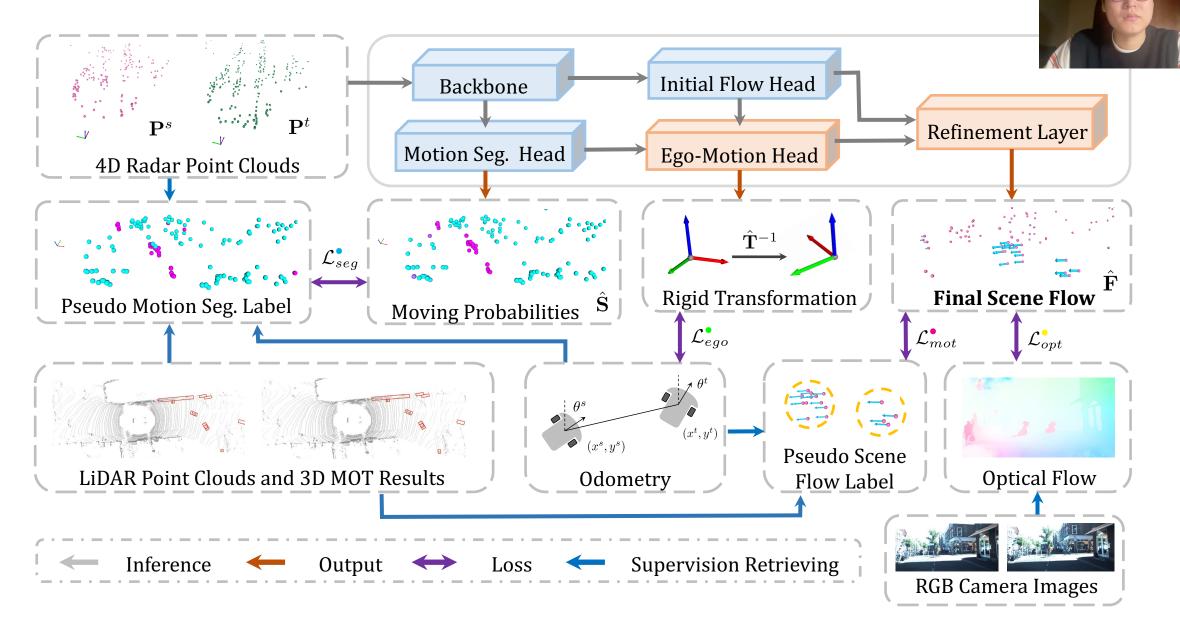
Research Question:

How to retrieve useful cross-modal supervision cues and apply them to bootstrap 4D radar scene flow learning?

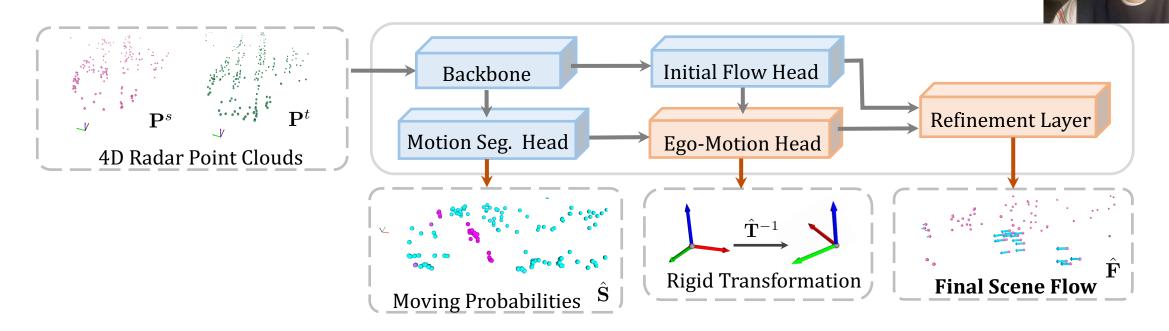
Contribution

- **The first** 4D radar scene flow learning using cross-modal supervision from colocated heterogeneous sensors on an autonomous vehicle.
- A pipeline that consists of a multi-task model architecture and loss functions to using multiple cross-modal constraints for model training.
- **State-of-the-art** performance of the proposed CMFlow method was demonstrated on a public dataset and show its effectiveness in downstream tasks as well.

Cross-modal supervised learning pipeline

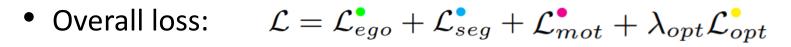


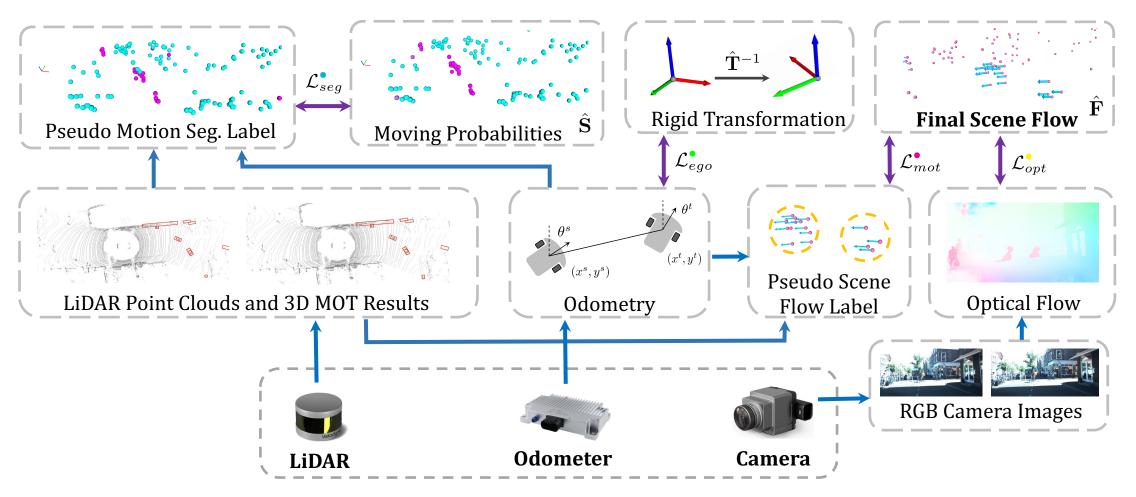
Model architecture



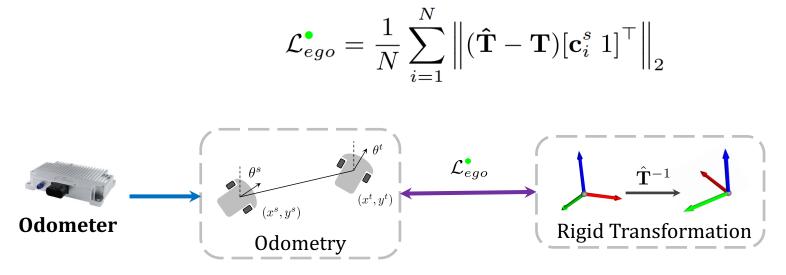
Takeaway:

- Two-stage fashion: blue/orange block colors for stage 1/2
- Multi-task model: scene flow, motion segmentation, ego-motion estimation
- The flow vectors of static points are only caused by the radar's ego-motion, we can regularize them with the more reliable rigid transformation





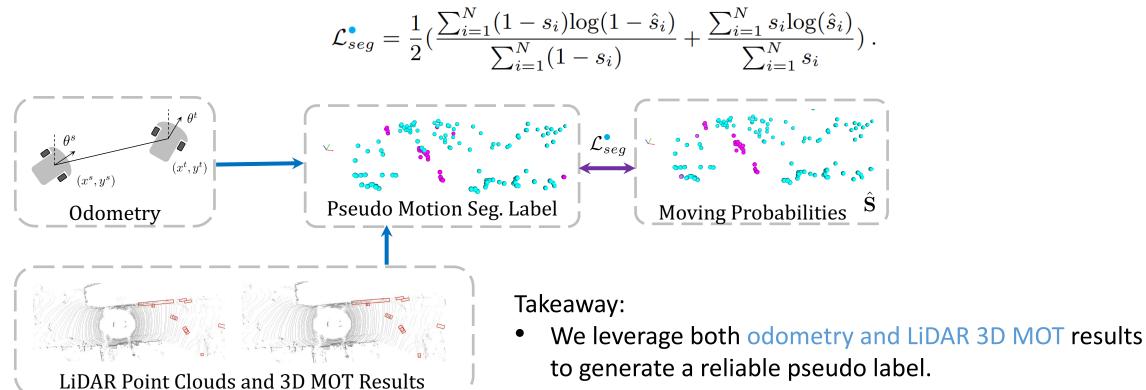
Ego-motion loss:



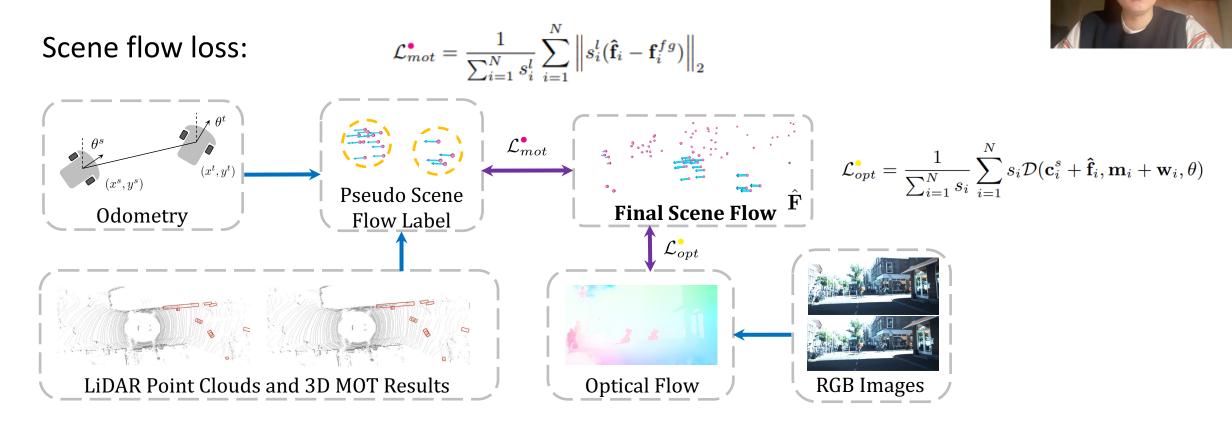
Takeaway:

• The odometry can be used to explicitly supervise the rigid transformation and implicitly constrain the initial and final scene flow output

Motion segmentation loss:



• Moving and static points are supervised separately to balance their impact.



Takeaway:

- We supervise foreground points scene flow with LiDAR 3D MOT Results
- In the optical loss, we take the point-to-ray distance as the training objective, which is more insensitive to points at different ranges.

Main results

Method	Sup.	EPE [m]↓	AccS↑	AccR↑	RNE $[m]\downarrow$	MRNE $[m]\downarrow$	SRNE [m]↓
ICP [4]	None	0.344	0.019	0.106	0.138	0.148	0.137
Graph Prior* [33]	None	0.445	0.070	0.104	0.179	0.186	0.176
JGWTF* [31]	Self	0.375	0.022	0.103	0.150	0.139	0.151
PointPWC [52]	Self	0.422	0.026	0.113	0.169	0.154	0.170
FlowStep3D [21]	Self	0.292	0.034	0.161	0.117	0.130	0.115
SLIM* [2]	Self	0.323	0.050	0.170	0.130	0.151	0.126
RaFlow [9]	Self	0.226	0.190	0.390	0.090	0.114	0.087
CMFlow	Cross	0.141	0.233	0.499	0.057	0.073	0.054
CMFlow (T)	Cross	0.130	0.228	0.539	0.052	0.072	0.049

Takeaway:

- The state-of-the-art performance compared with baselines that also demand no annotation efforts
- The performance is further improved when applying the temporal information (i.e., T)

Breakdown results

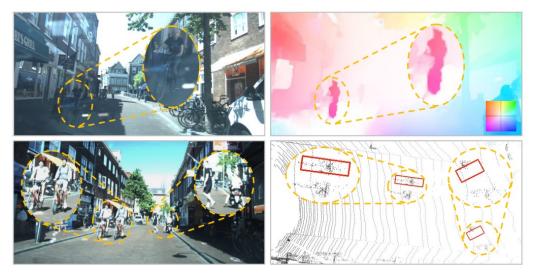
	Ο	L	С	EPE [m]↓	AccS↑	AccR↑	RNE [m]↓
(a)				0.228	0.184	0.392	0.091
(b)	\checkmark			0.161	0.203	0.442	0.065
(c)	\checkmark	\checkmark		0.145	0.228	0.482	0.058
(d)	\checkmark		\checkmark	0.159	0.216	0.458	0.064
(e)	\checkmark	\checkmark	\checkmark	0.141	0.233	0.499	0.057

	L (seg)	L (flow)	EPE $[m]\downarrow$	AccS↑	AccR↑	RNE [m] \downarrow
(a)			0.159	0.216	0.458	0.064
(b)	\checkmark		0.156	0.221	0.467	0.063
(c)		\checkmark	0.152	0.217	0.477	0.061
(d)	✓	\checkmark	0.141	0.223	0.499	0.057

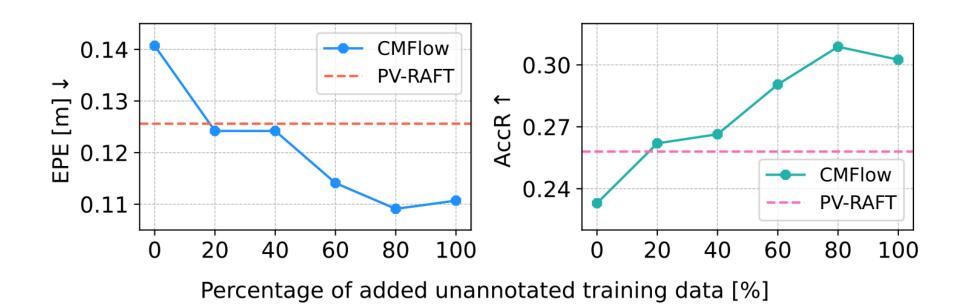
Takeaway:

- All modalities contribute to our method, and the odometer leads to the biggest performance gain.
- Due to their noisy labels, the gains brought by camera and LiDAR are smaller than that of odometer.

Illustration of the causes of noisy supervision



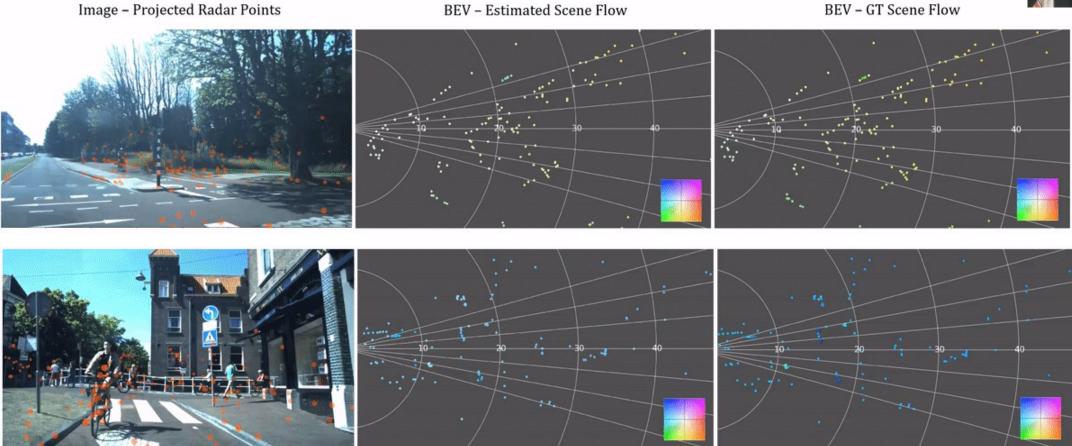
Impact of the amount of unannotated data



Takeaway:

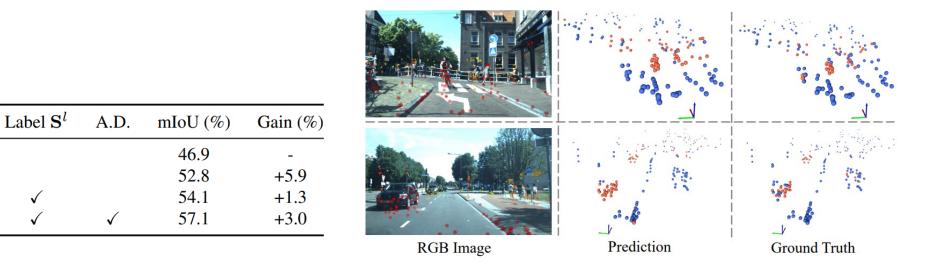
- The performance of CMFlow improves by a large margin by using extra unannotated training data.
- After adding only 20% extra samples, CMFlow can already outperform PV-RAFT trained with less annotated samples.

Scene flow demo



Color of points in the BEV image represents the magnitude and direction of scene flow vectors.

Subtask – motion segmentation evaluation



Takeaway:

(a)

(b)

(c)

(d)

Label \mathbf{S}^{v}

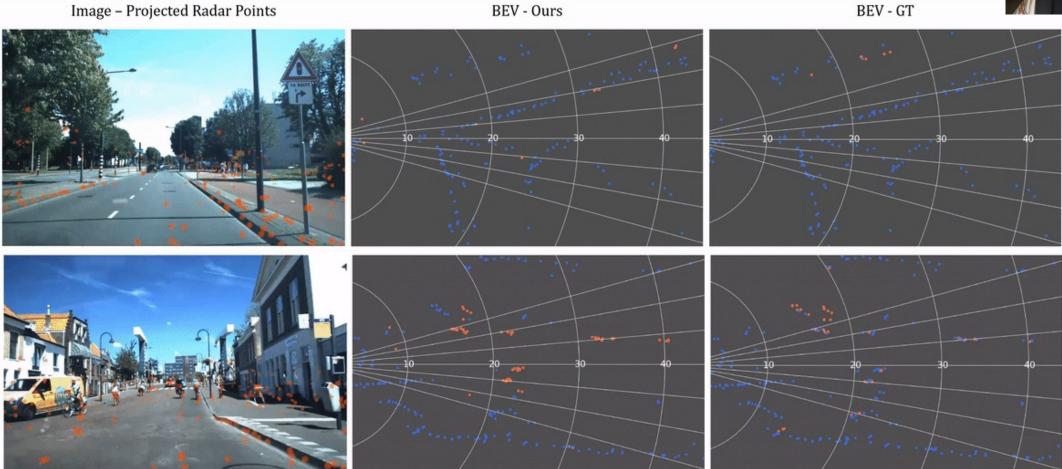
 \checkmark

 \checkmark

 \checkmark

• Two ingredients of the pseudo motion segmentation label contributes to our performance improvement on motion segmentation.

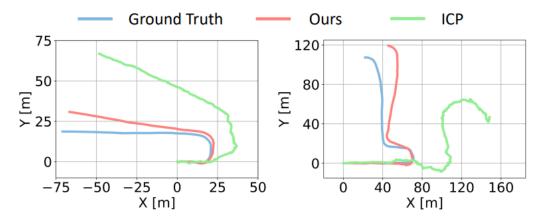
Motion segmentation demo



In the BEV images, blue/orange denotes static and moving points respectively.

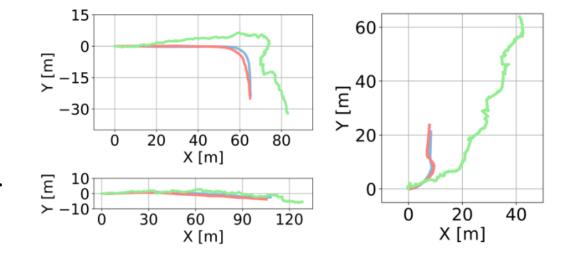
Subtask – ego-motion estimation

	0	L + C	A.D.	Т	RTE [m]	RAE [°]
(a)					0.090	0.336
(b)	\checkmark				0.086	0.183
(c)	\checkmark	\checkmark			0.085	0.145
(d)	\checkmark	\checkmark	\checkmark		0.071	0.089
(e)	\checkmark	\checkmark	\checkmark	\checkmark	0.066	0.090

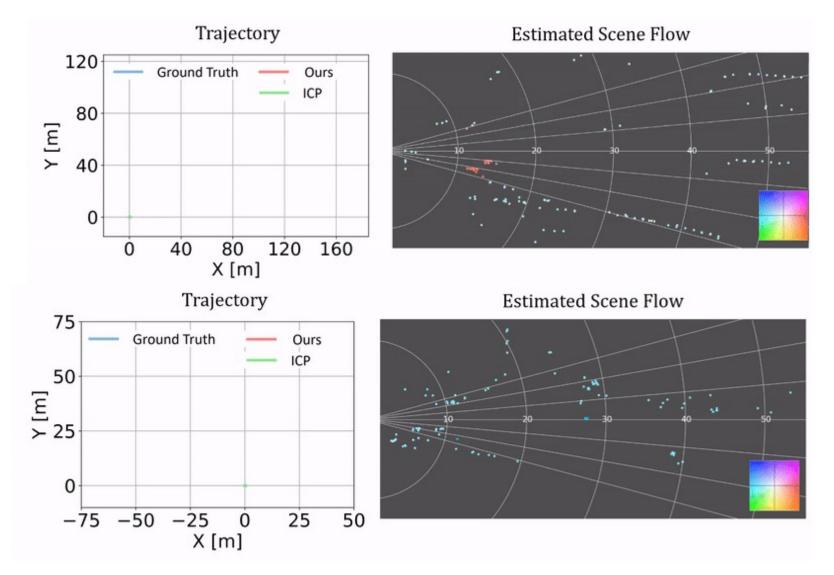


Takeaway:

- Both odometer and LiDAR/camera contribute to our ego-motion estimation results
- By accumulating inter-frame ego-motion, our method can support the long-term odometry.



Ego-motion demo



Thanks for watching the presentation!

Code

Demo

Paper

Page

Hidden Gems: 4D Radar Scene Flow Learning Using Cross-Modal Supervision

Fangqiang Ding, Andras Palffy, Dariu M. Gavrila, Chris Xiaoxuan Lu

WED-AM-106 (Highlight)

