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How can we protect privacy when training an 
image embedding model from user data?

● User-level DP: mathematical guarantees that a model won’t memorize user 
data; successfully applied in small on-device language models in production.

● DP-FedEmb: a new algorithm to train large image-to-embedding feature 
extractors specifically designed for scalability to achieve strong privacy-utility 
trade-offs
○ Virtual clients,  partial aggregation, private local fine-tuning, and public 

pretraining  
● Superior utility under same privacy budget on benchmark datasets DigiFace, 

EMNIST, GLD and iNaturalist for faces, landmarks and natural species.
●  It is possible to achieve strong user-level DP guarantees of single-digit epsilon 

while controlling the utility drop within 5%, when millions of users can 
participate in training .
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● construction of virtual clients
● selection of what information is shared among users



User Data (in Datacenter)
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Data anonymization: model won’t memorize individual user’s data 

User-level Differential Privacy ?
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User-level Differential Privacy by “Federated” Algorithm



“Natural” fit
● Data granularity by users
● Infrequent aggregation and model release

User-level Differential Privacy by “Federated” Algorithm
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Server adds noise 
proportional to 
sensitivity when 

combining updates

Differentially Private Federated Averaging (DP-FedAvg)

trained 
model

Clip updates to limit 
a user’s contribution 
(bounds sensitivity)

User-siloed data
● Conceptual broadcast and aggregation



Image Embedding Models



Image Embedding Models
Challenges with DP-FedAvg

● Heterogeneity: contrastive samples in user-partitioned data
● High-dimensionality that cannot be solved by sampled softmax Backbone parameters

● ResNet-50 ~23.77M
● MobileNetV2 ~3.49M

Head parameters
● 10K identities ~1.28M
● 10M identities ~1280M
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Results on DigiFace

● Centralized baseline is a suboptimal repro removing tricks like data augmentation that are 
not currently implemented in federated training yet

● Formal privacy guarantees are based on extrapolation
○ More users are available in a practical setting
○ For sufficiently large data, the utility accuracy will not drop if noise multiplier and 

clients per round proportionally increase; 32*8 GPUs can be used for 8 days
● Verified that the conclusions on DigiFace are very similar to conclusions generated from 

experiments on natural facial images

Privacy guarantees with 
less than 5% utility drop  



Takeaways 
● Differential privacy guarantees are achievable in practice

○ Scale is the key: large amount of data and computation resources

○ Improving privacy-utility trade-off by public data, new algorithms, DP 

mechanism and accounting

● Privacy is not “free”

○ Computation and infra support

○ Common understanding of the techniques: verifiable, auditing

○ Engineering efforts / migration cost
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