

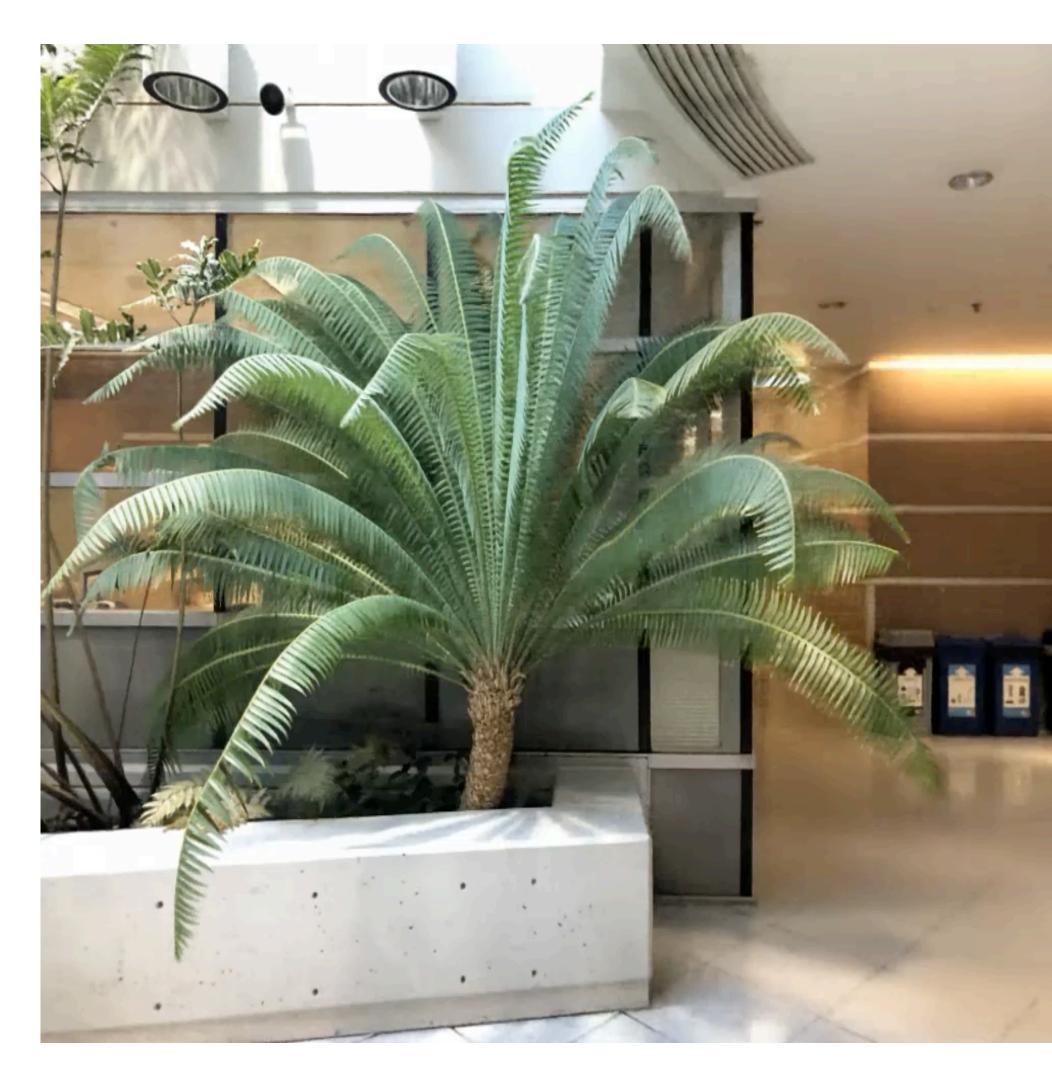
Learning to Render Novel Views from Wide-**Baseline Stereo Pairs**

Yilun Du, Cameron Smith, Ayush Tewari⁺, Vincent Sitzmann⁺

+ denotes equal advising

TUE-PM-079

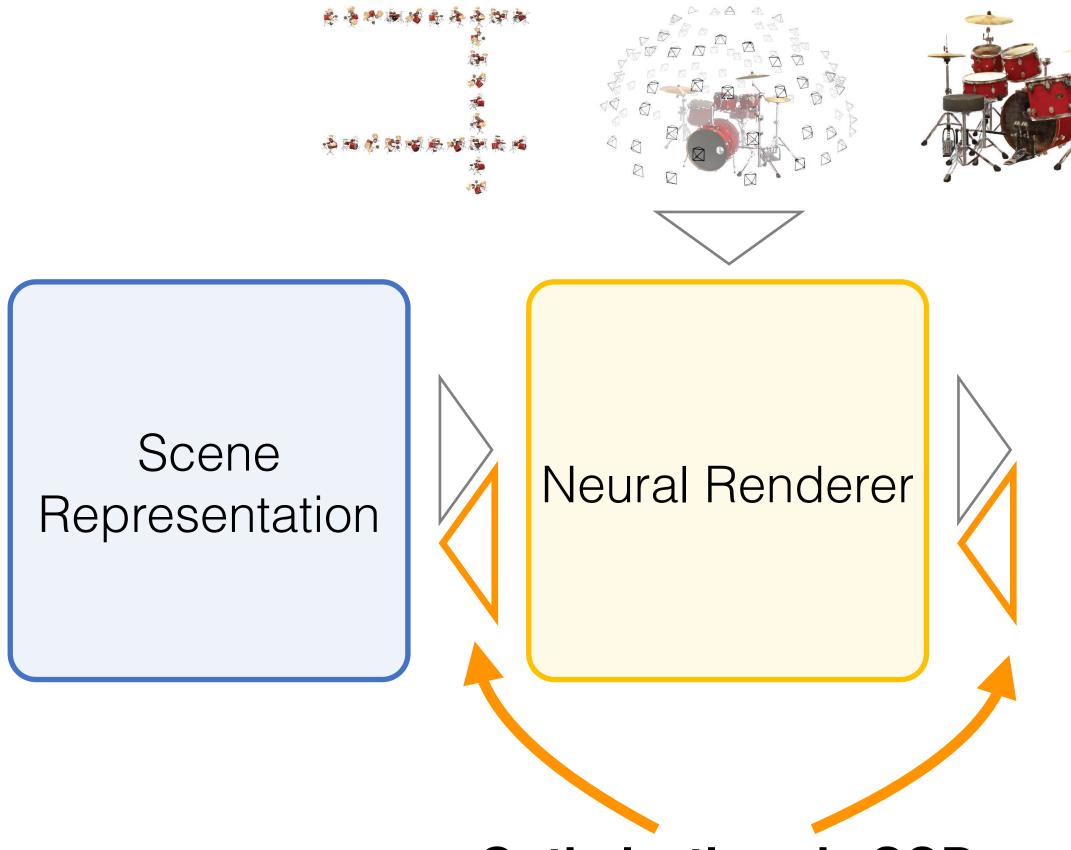
3D Reconstruction from Many Images



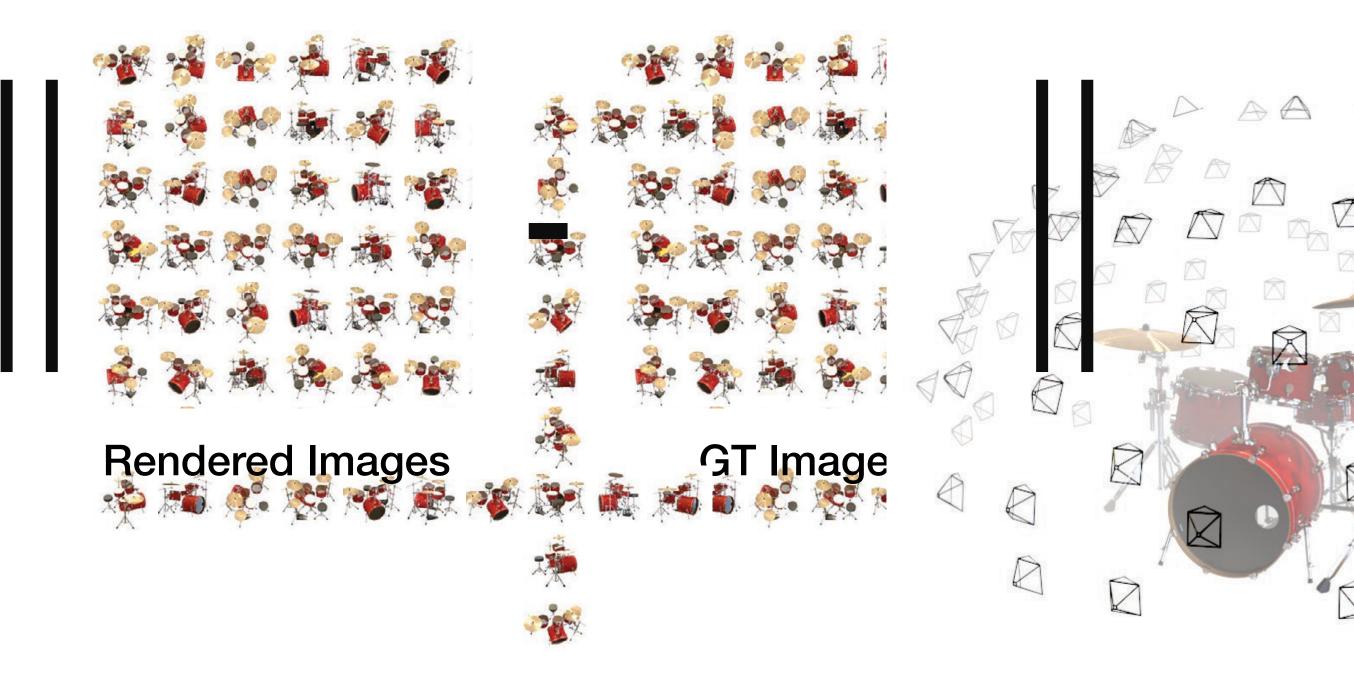
NeRF, ECCV 2021

Plenoxels, CVPR 2022

Reconstruction via per-scene Optimization



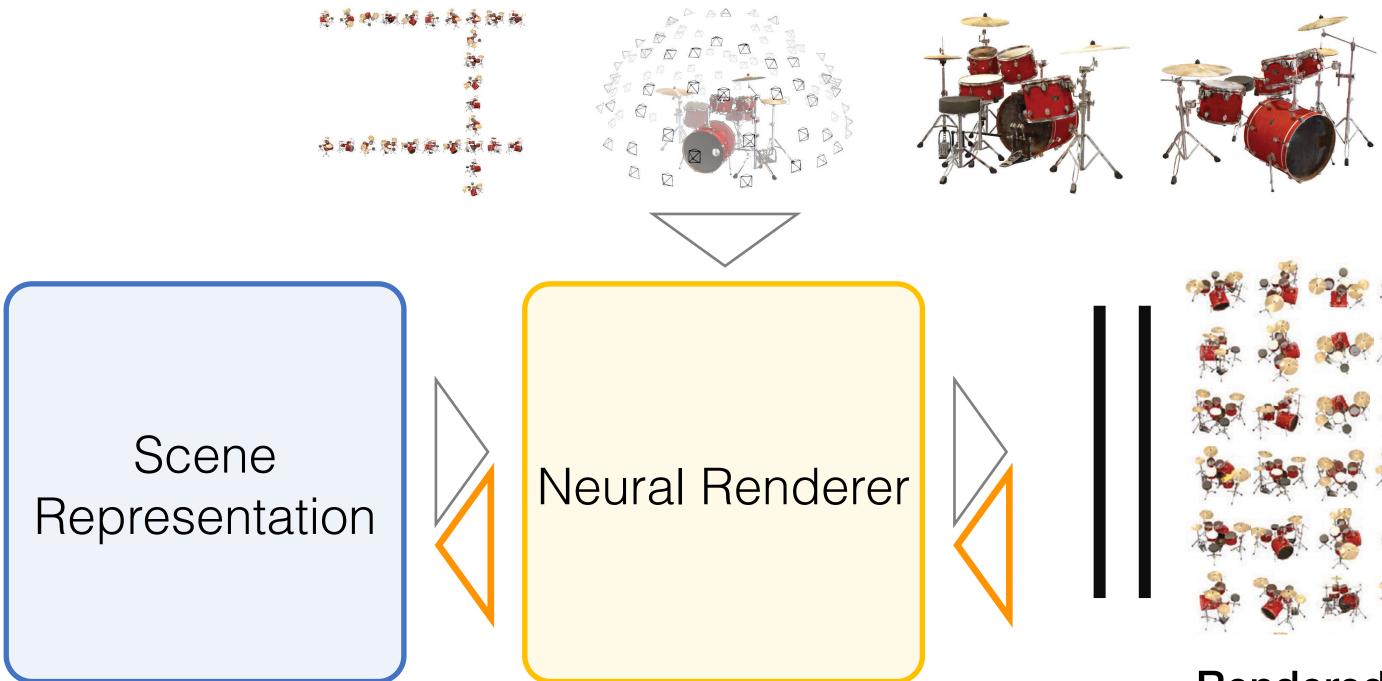
Optimization via SGD



Reconstructing Static Scene from 3 images

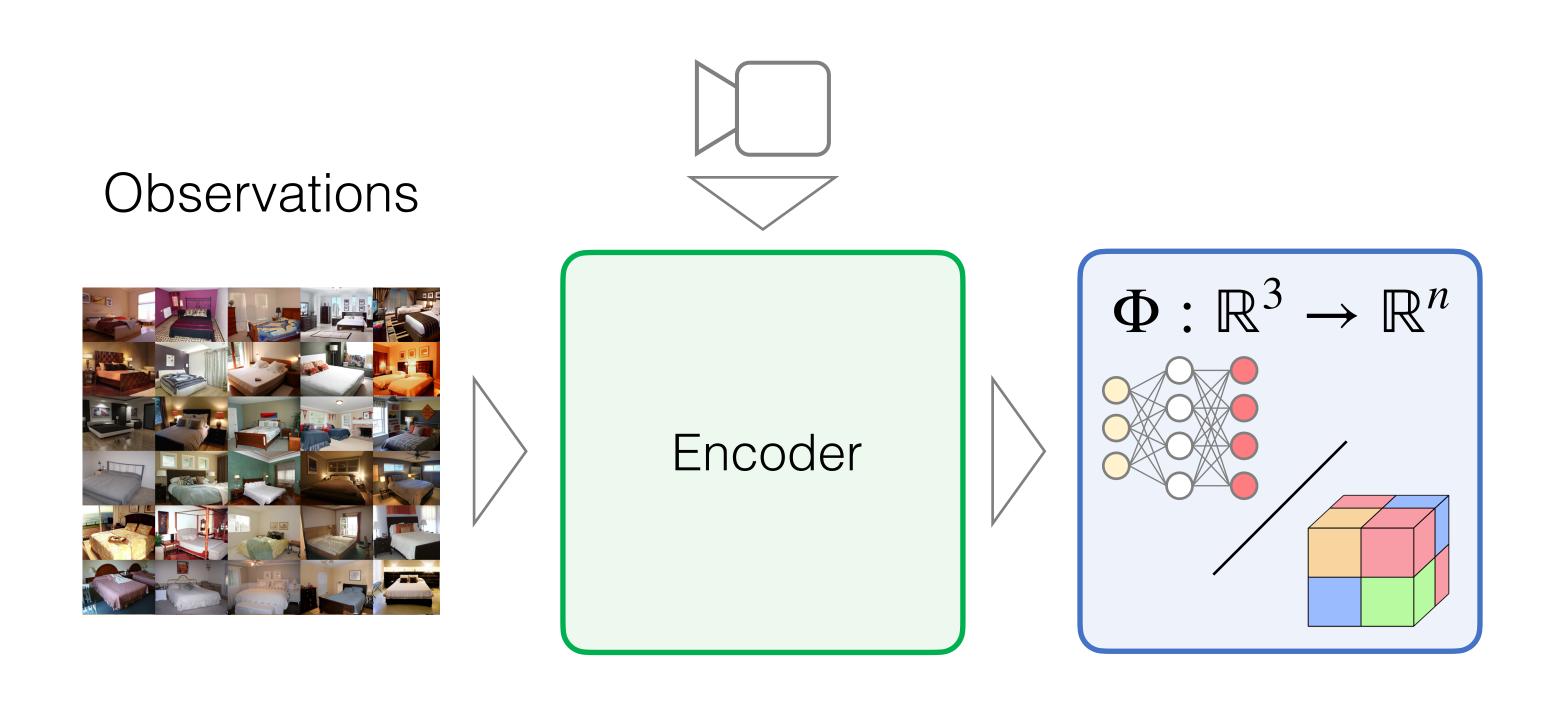
Video Courtesy: RegNeRF, Niemeyer et al.

Reconstruction via per-scene Optimization

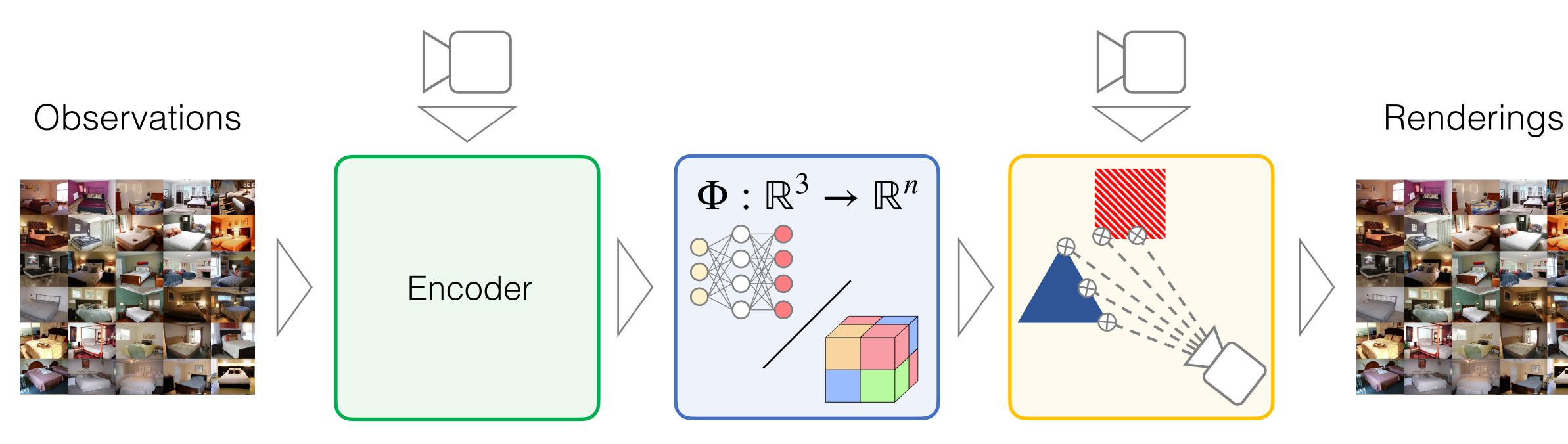


Rendered Images GT Image Z Can't deal with incomplete observations: Netral learned Not scalable: Need *online, real-time* reconstruction.

Amortized (=feedforward, generalizable) 3D Reconstruction



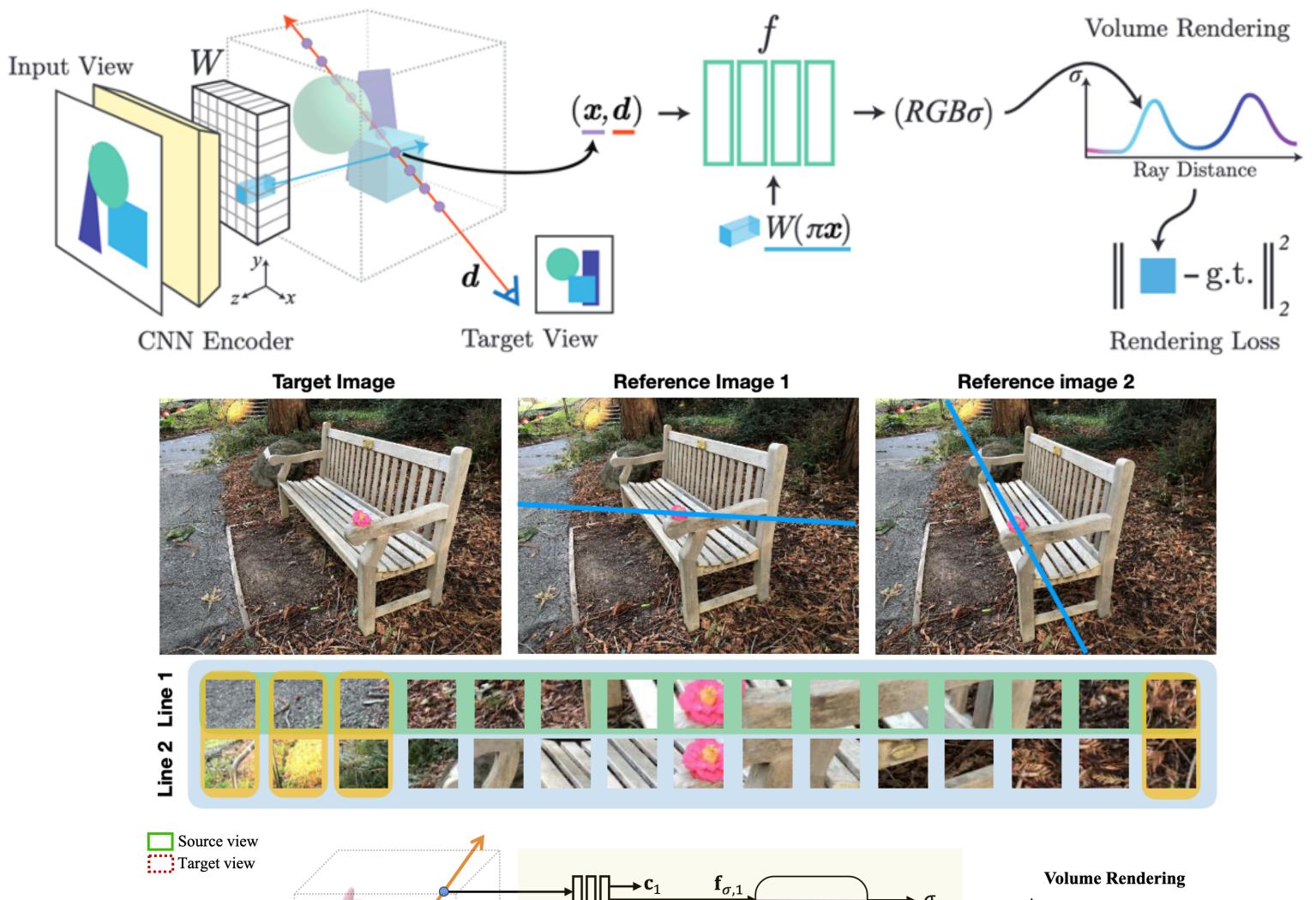
Amortized (=feedforward, generalizable) 3D Reconstruction

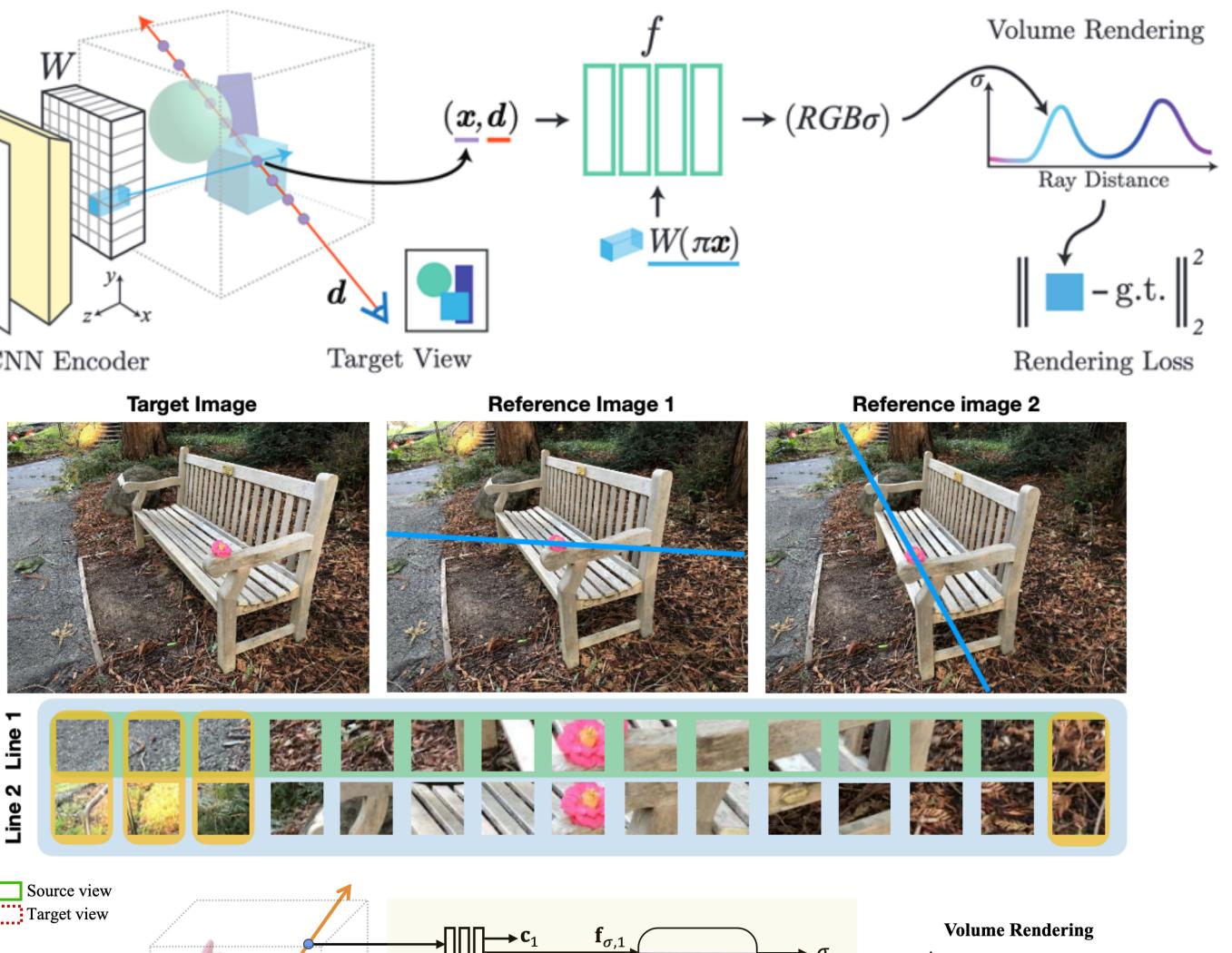


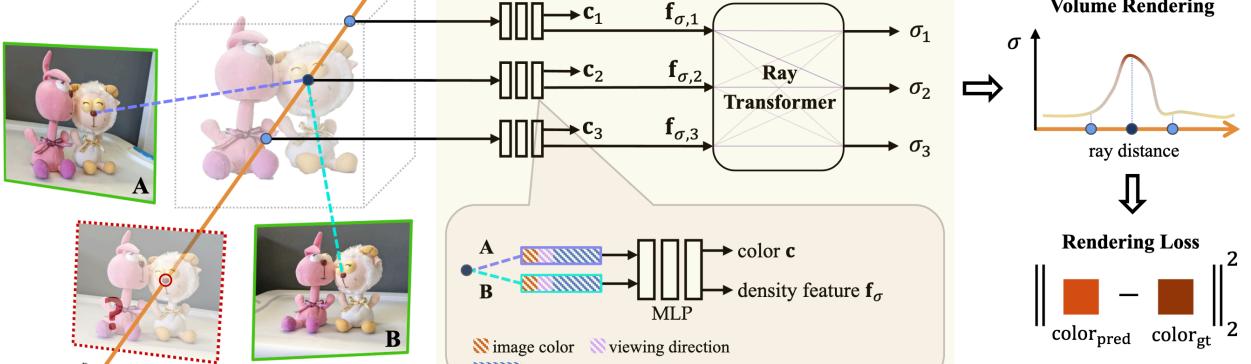
Learning to Render Novel Views from Wide-Baseline Stereo Pairs

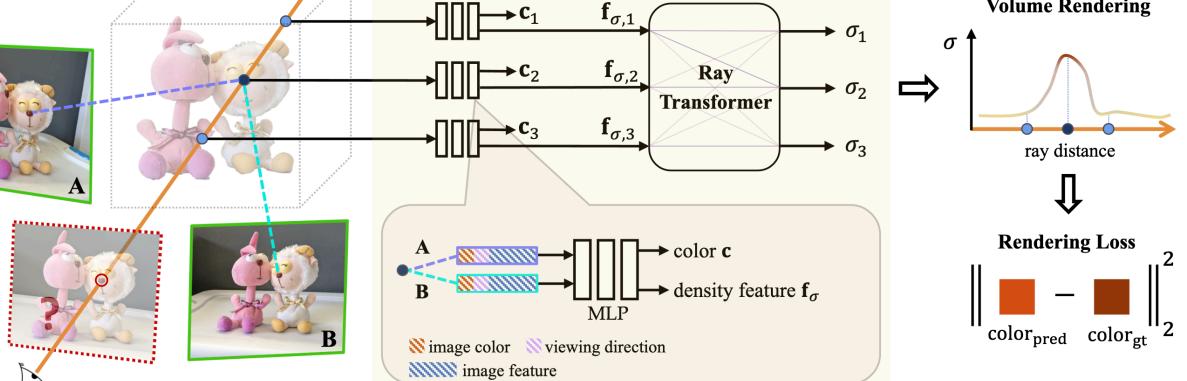
Prior Work

PixelNeRF, Yu et al. 2021







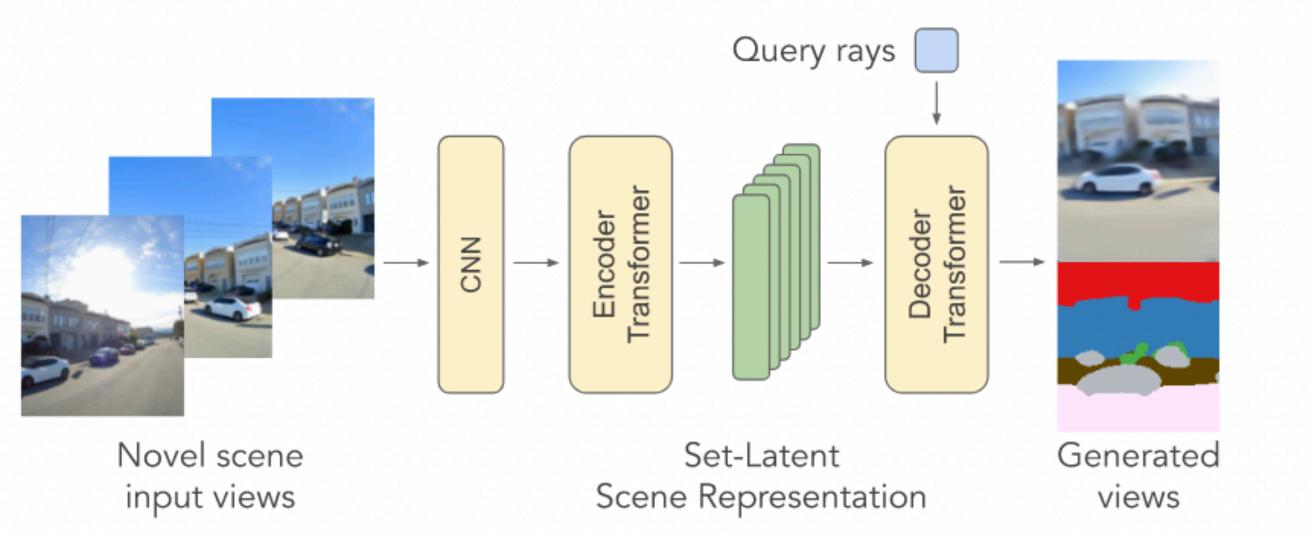


Generalized Patch-Based Neural

Rendering, Suhail et al. 2022

IBR-Net, Wang et al. 2021

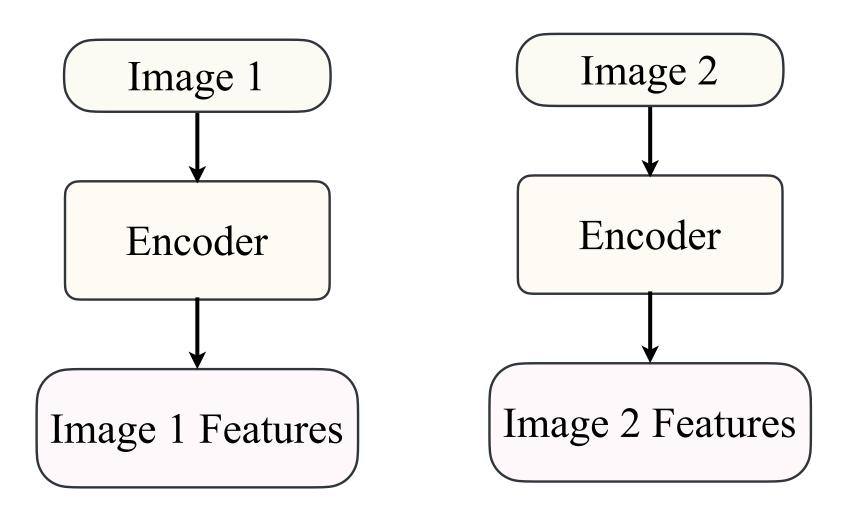
Prior Work



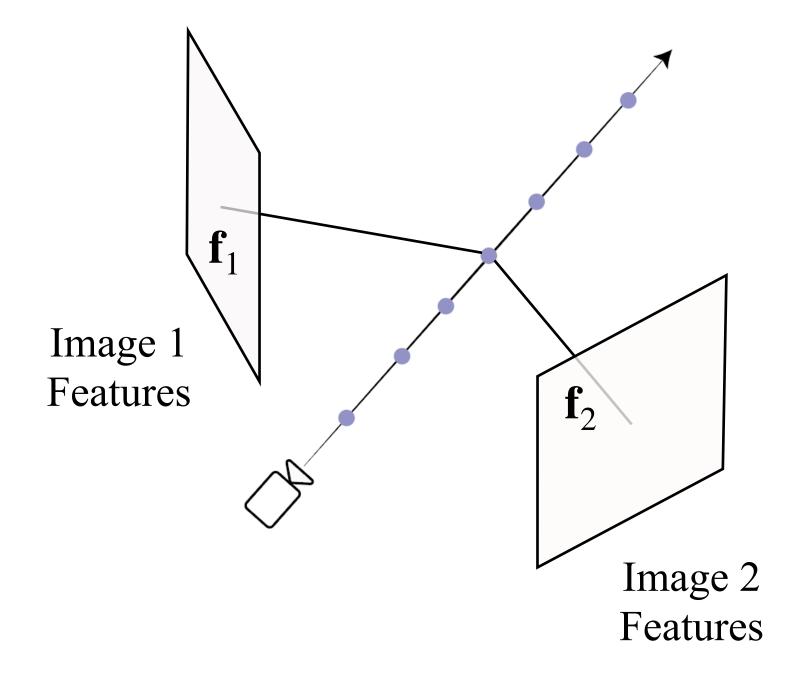
Scene Representation Transformer, Sajjadi et al. 2022

Two Core Challenges

Per-Image Feature Extraction

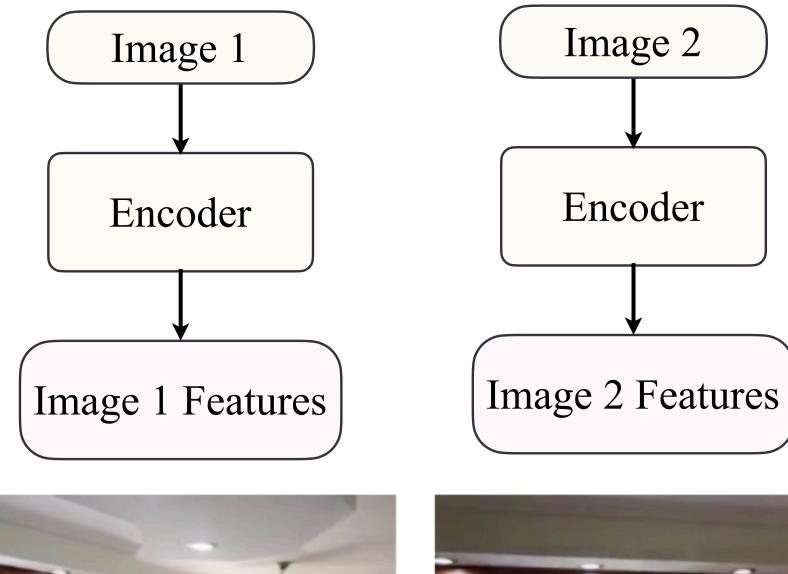


Sampling of pixel-aligned features, Volume Rendering



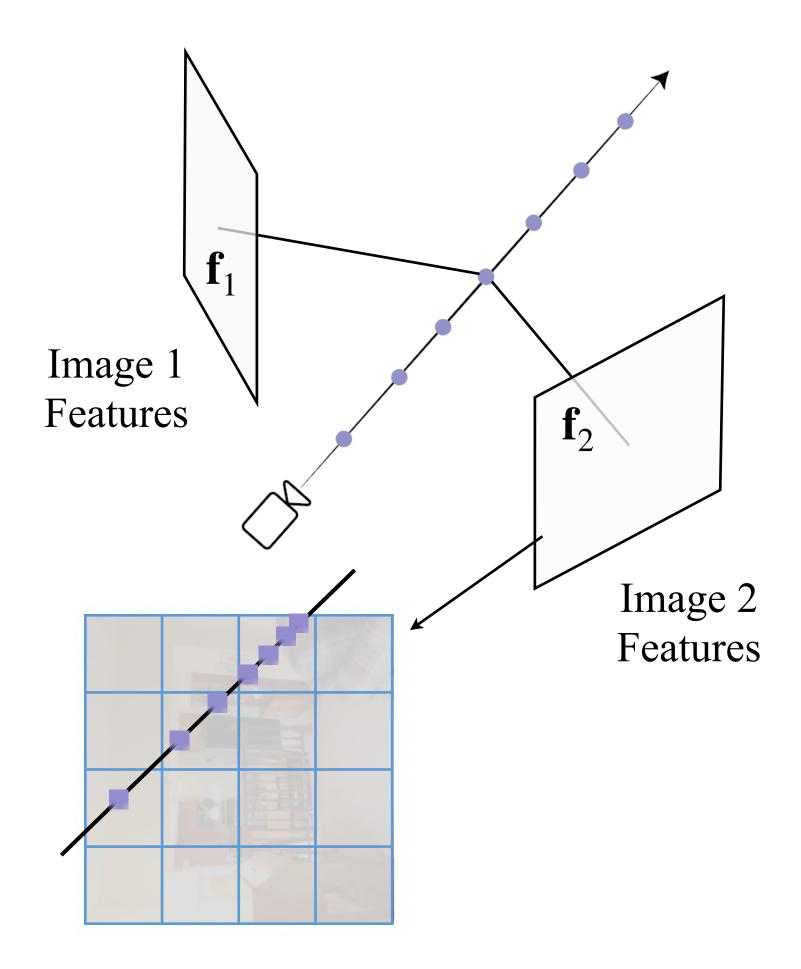
Two Core Challenges

Per-Image Feature Extraction



Depths estimated for view 1 and view 2 might be inconsistent!

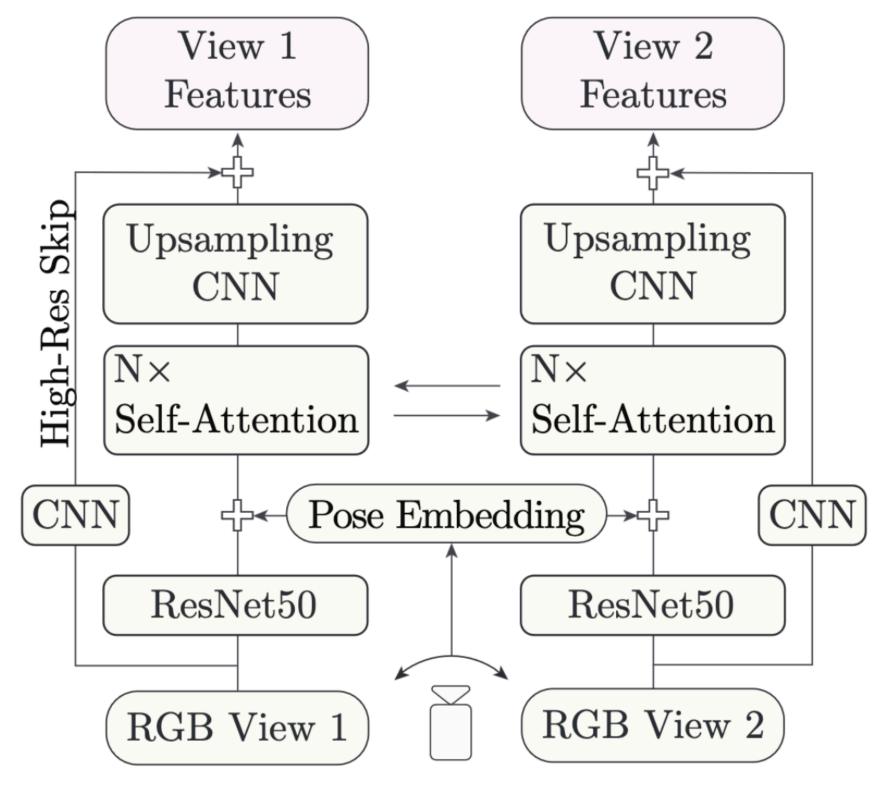
Sampling of pixel-aligned features, Volume Rendering

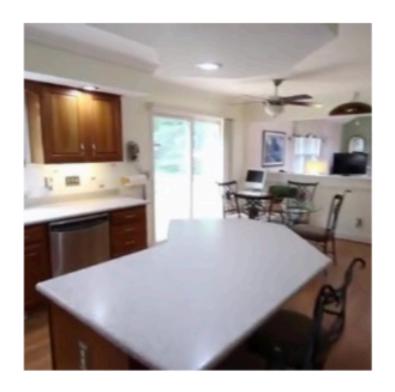


There's no point in sampling a pixel more than once, we're not gaining information! ¹²

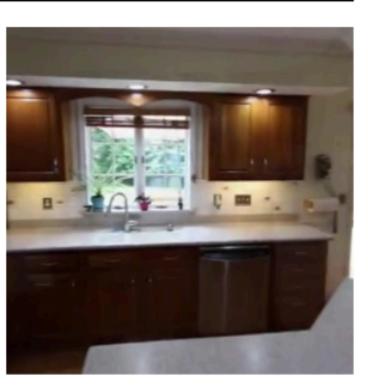
Piece 1: Multi-View Encoder

(a) Multi-View ViT Encoder

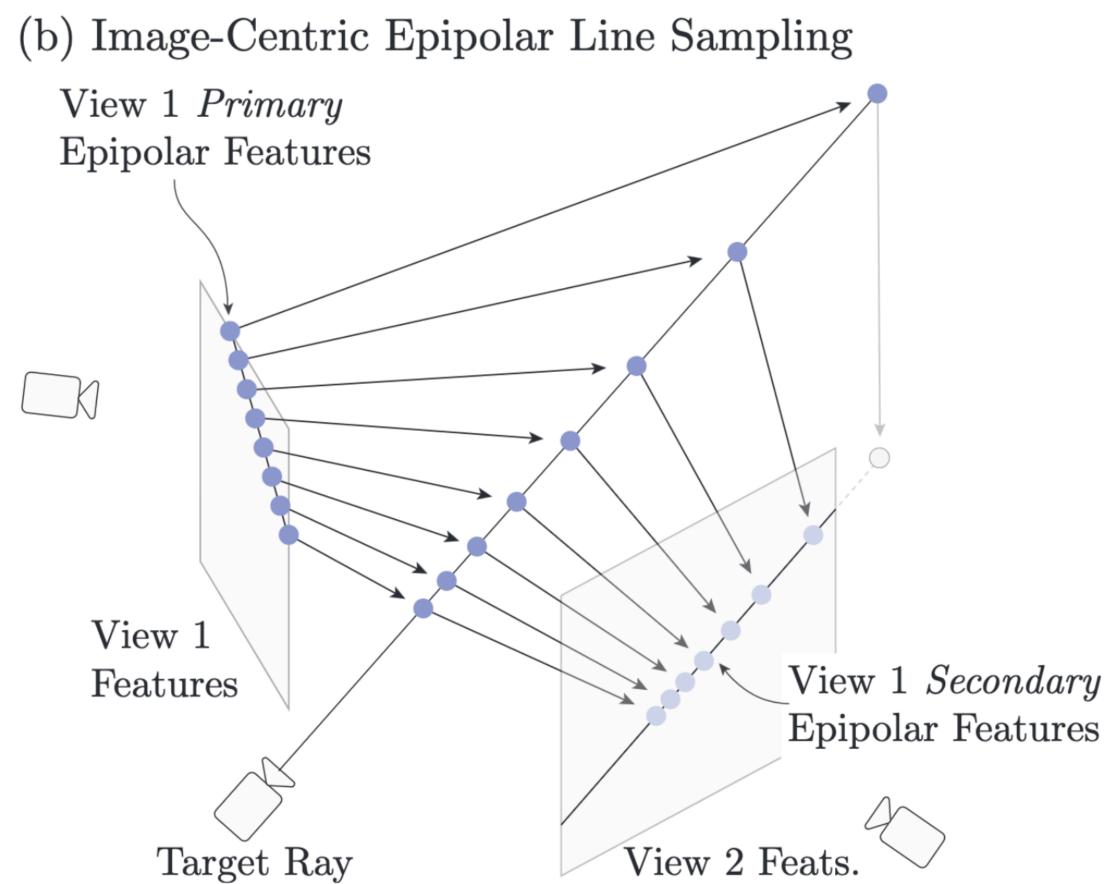




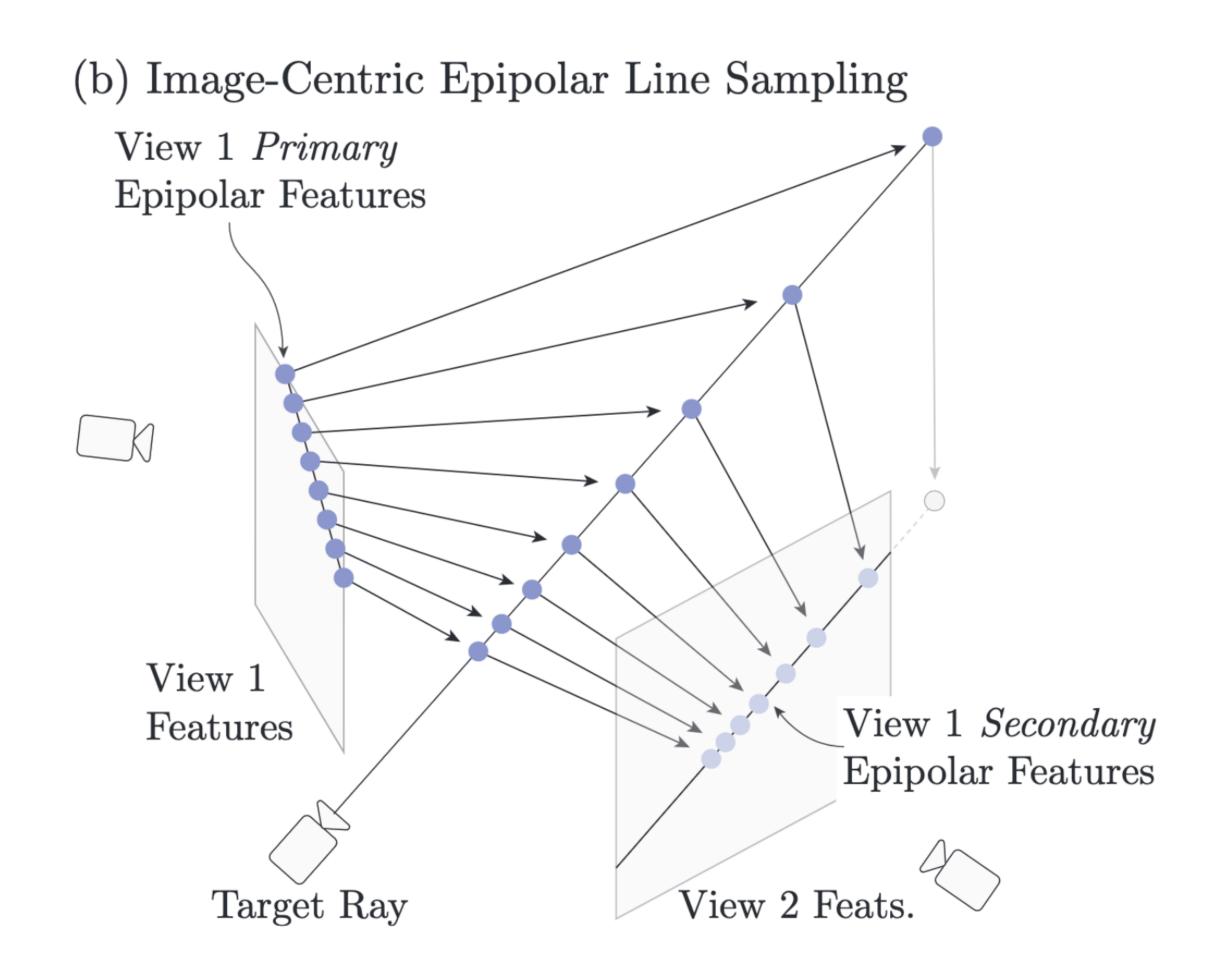
Input Images

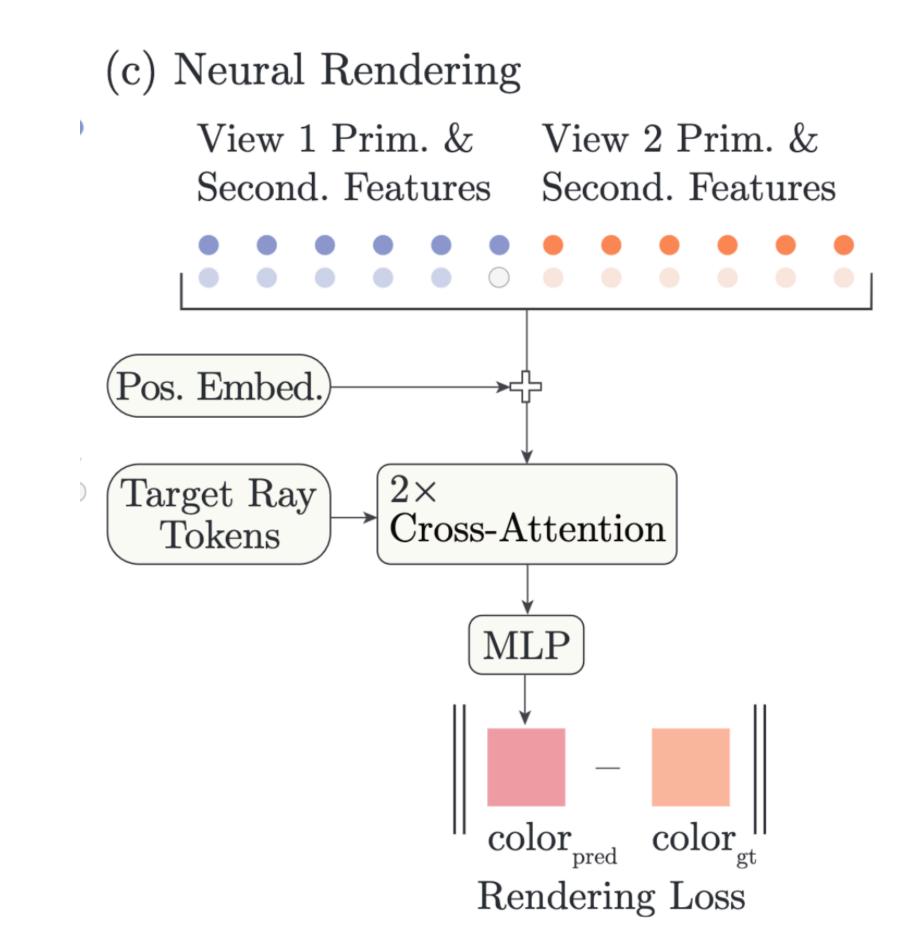


Piece 2: Image-Centric Epipolar Line Sampling & **Attention-based Rendering**

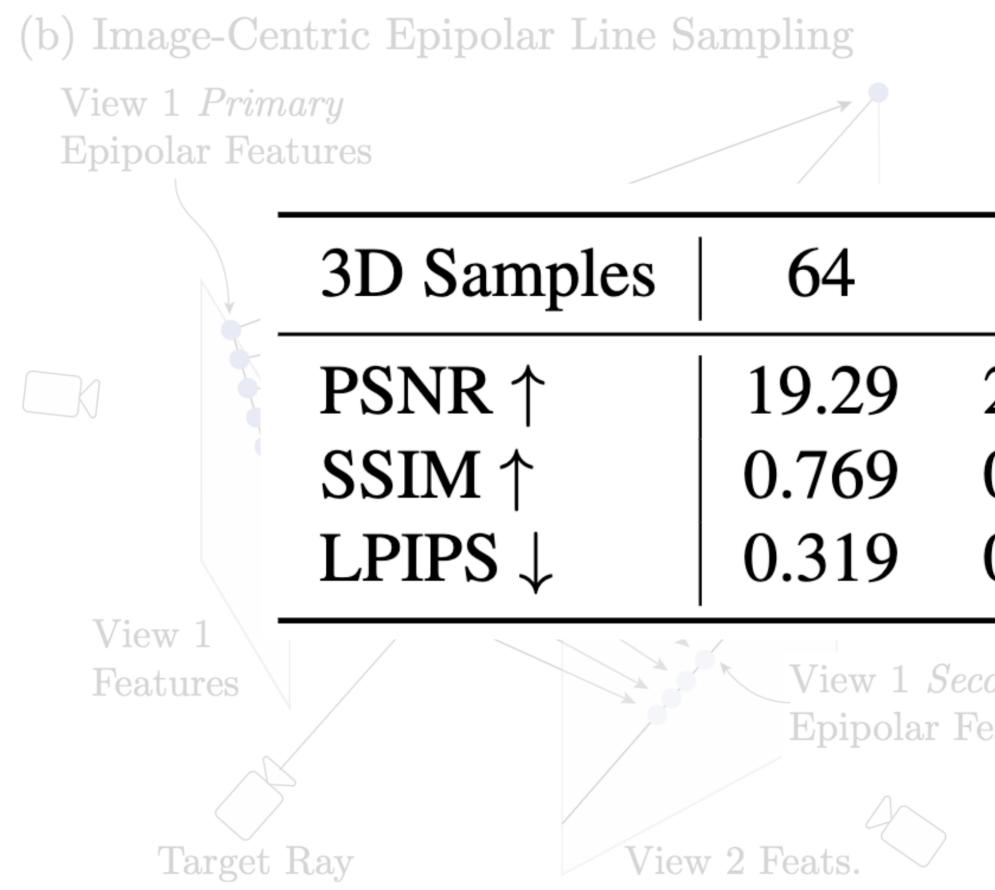


Piece 2: Image-Centric Epipolar Line Sampling & Attention-based Rendering



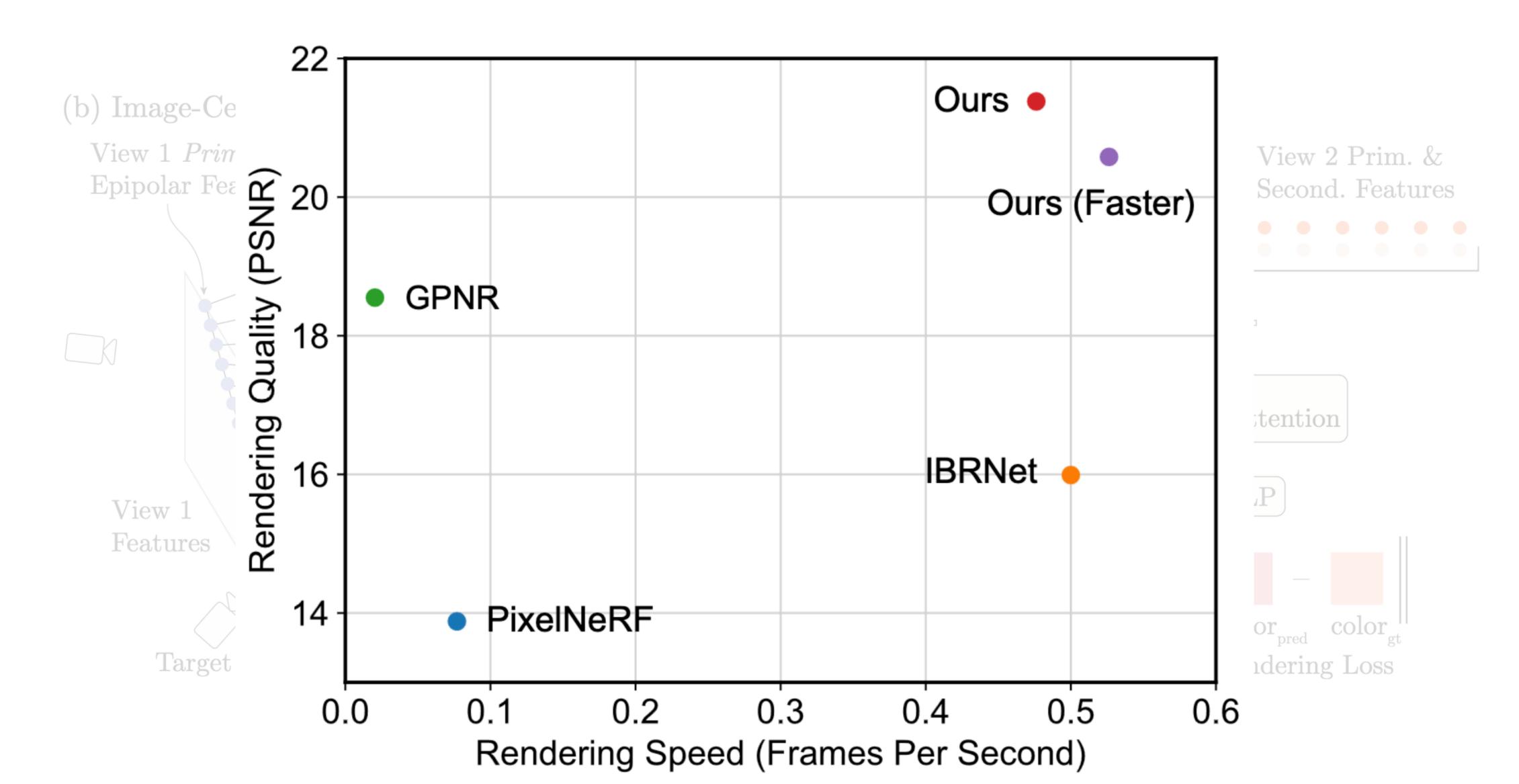


Piece 2: Image-Centric Epipolar Line Sampling & Attention-based Rendering



	(c)	Neural Rendering View 1 Prim. & View 2 Prim. & Second. Features Second. Features
128	192	Epi. Samples
20.35	20.60	21.38
0.778	0.790	0.839
0.284	0.273	0.262
<i>condary</i> Teatures		color _{pred} color _{gt} Rendering Loss

Piece 2: Image-Centric Epipolar Line Sampling & Attention-based Rendering



Input

Rendering

Input

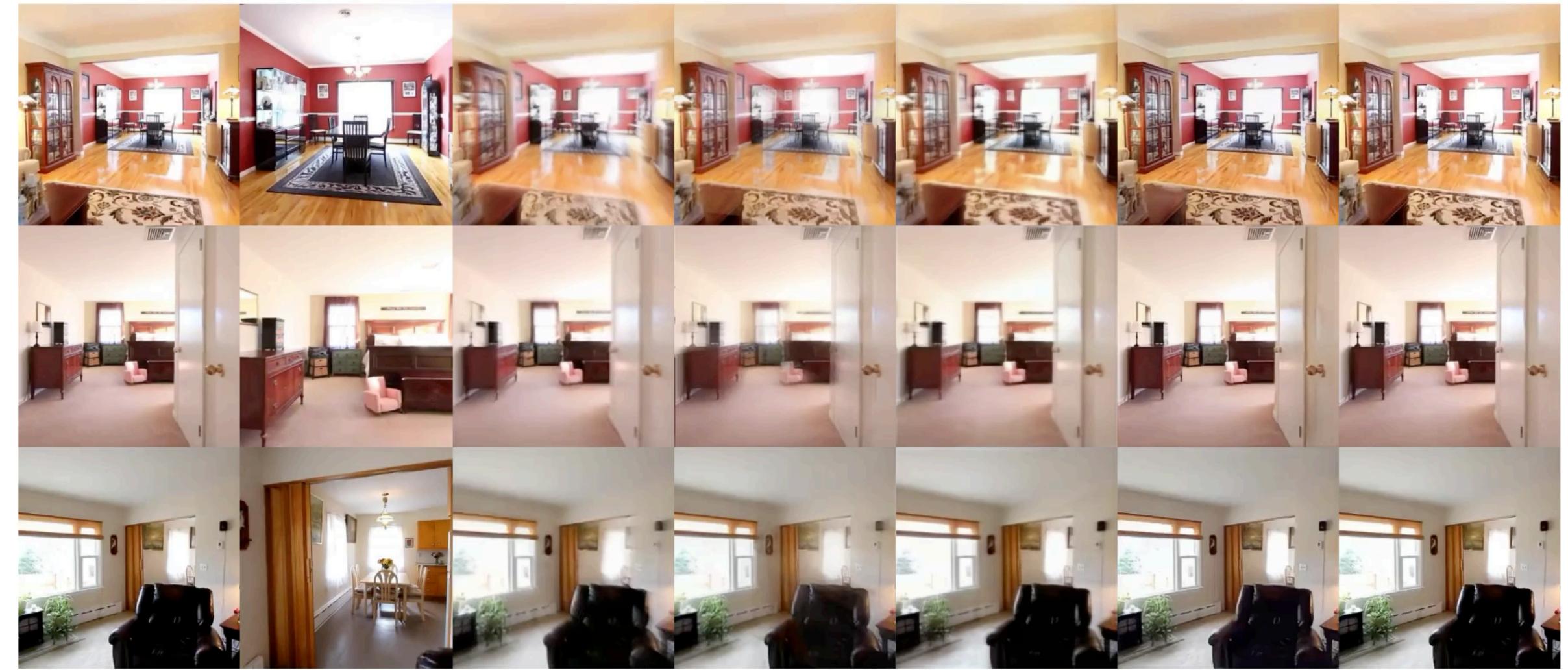


Rendering

Baseline Comparison

Input

PixelNeRF

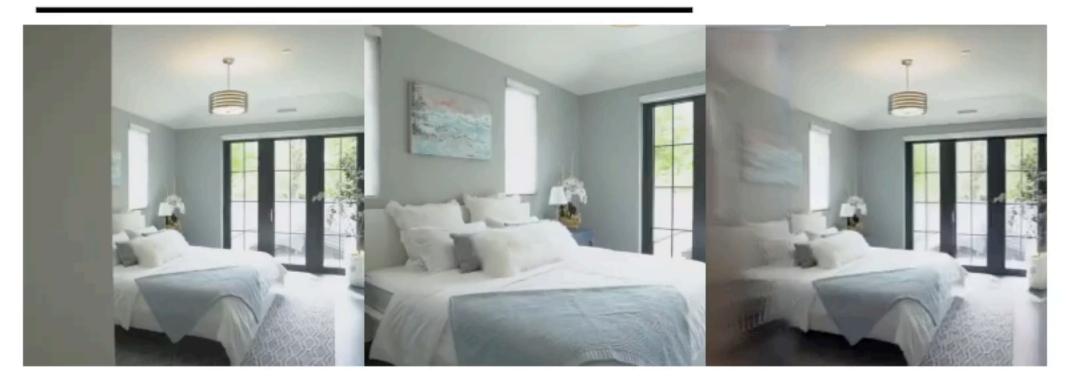


Target IBRNet GPNR Ours

Unposed Images

Input

Rendering



Rendering

Learning to Render Novel Views from Wide-**Baseline Stereo Pairs**

Yilun Du, Cameron Smith, Ayush Tewari⁺, Vincent Sitzmann⁺

+ denotes equal advising

TUE-PM-079

