

# **Neural Texture Synthesis with Guided Correspondence**



Yang Zhou

Kaijian Chen



Rongjun Xiao



Hui Huang







#### **Example-based Texture Synthesis**



Guidance Channels





#### **Texture Optimization**



#### **Uncontrolled** Texture Optimization

#### **Controlled** Texture Optimization with Guidance







Feed-forward Generative Networks







Example & Guidance



Feed-forward Generative Networks







Example & Guidance







Feed-forward Generative Networks





#### **Texture Transfer**







#### Image Inpainting







## Single-image Editing







### Background

>Example-based texture synthesis



Source Texture

Texture Synthesis





Target Texture





# **Classical approaches**

Markov Random Field (MRF)-based Texture Optimization:

• Goal: optimize all overlapping output patches to be similar to their nearest neighbor in the input



Source Texture



#### **Target Texture**



[Kwatra et al. Texture Optimization for Example-based Synthesis. 2005]



# **Classical approaches**

Markov Random Field (MRF)-based Texture Optimization:

• Goal: optimize all overlapping output patches to be similar to their nearest neighbor in the input.



UNE 18-22. 2023

## **Classical approaches**

Markov Random Field (MRF)-based Texture Optimization:

• Goal: optimize all overlapping output patches to be similar to their nearest neighbor in the input.



Textures are optimized gradually along with the iteration.

Kwatra et al. Texture Optimization for example-based Synthesis. 2005





>Align the statistics of deep features



[Gatys et al. Image Style Transfer Using Convolutional Neural Networks. 2016]





[Heitz et al. A Sliced Wasserstein Loss for Neural Texture Synthesis. 2021]



>Align the statistics of deep features



#### [Gatys et al. Image Style Transfer Using Convolutional Neural Netwo

#### Only suitable for Homogeneous Textures!!!

#### Sliced Wasserstein loss





1000

ral Texture Synthesis. 2021]





#### ≻GAN-based Methods





[Zhou et al. Non-Stationary Texture Synthesis by Adversarial Expansion. 2018]





#### Single Image Generative Adversarial Networks

[Shaham et al. Learning a Generative Model from a Single Natural Image. 2019]





#### ≻GAN-based Methods

# Suffer from visual artifacts!!!

#### SinGAN



TexExp

[Zhou et al. Non-Stationary Texture Synthesis by Adversarial Expansion. 201

Shaham et al. Learning a Generative Model from a Single Natural Image. 201





# **CNNMRF**

#### **CNNMRF** (Convolution Neural Network + MRF)

- Nearest Neighbor Search: Color  $\rightarrow$  Deep Feature
- Pixel Update: Color Averaging  $\rightarrow$  Loss Back-propagation

$$E_s(\Phi(\mathbf{x}), \Phi(\mathbf{x}_s)) = \sum_{i=1}^m ||\Psi_i(\Phi(\mathbf{x})) - \Psi_{NN(i)}(\Phi(\mathbf{x}_s))||^2$$



[Li et al. Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis. 2016]





## **CNNMRF**







# **Guided Correspondence Distance**

≻Distance definition:



(depends on the type of guidance channel)





# **Guided Correspondence Distance**

>Occurrence penalty for solving the repetition issue.

• To prevent a source patch from being repeatedly selected as the correspondence.



Calculate the **approximate nearest neighbor field** 





# **Guided Correspondence Distance**

• Ablation study on occurrence penalty







>Blurry issue is caused by nearest neighbor inconsistency over the iterations



Minimizing the conventional L2-distance makes the optimization favor the average of nearby samples.



Contextual similarity requires a target sample to be significantly closer to its nearest neighbor than to all other source samples.



Contextual Similarity



[Mechrez et al. The contextual loss for image transformation with non-aligned data. 2018]



**Contextual similarity** requires a target sample to be significantly closer to its nearest neighbor than to all other source samples.

1. Normalize the distance and convert it to similarity:

$$w_{ij} = \exp\left(\frac{1 - d_{ij}/(\min_k d_{ik} + \epsilon)}{h}\right),$$

2. Introduce contextual information to obtain contextual similarity:

3. Calculate the Guided Correspondence loss :

$$CX_{ij} = w_{ij} / \sum_k w_{ik}.$$

 $\mathcal{L}_{GC}(I_t, I_s) = \frac{1}{n_t} \sum_i -log(CX_{i,NN(i)}).$ 





可视计算研

Ablation study:  $\mathcal{L}_2$ -based loss vs.  $\mathcal{L}_{GC}$  loss 





可视计算研究中

Ablation study:  $\mathcal{L}_2$ -based loss vs.  $\mathcal{L}_{GC}$  loss •





#### **Experiments**

| 4. **   | 12.jpg  | 25.jpg  | 26.jpg   | 34.jpg  | 51.png             | 72.jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------|---------|---------|----------|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 73.jpg  | 89.jpg  | 90.jpg  | 104.jpg  | 129.jpg | 182.jpg            | 202.jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 206.jpg | 207.ipg | 208.ipg | 209.ipg  | 210.ipg | 211.ipg            | 212.ipg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 214 ing | 221 ins | 230 ing | 239 ineq | 240 ppg | 401 ing            | 403 ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2 (4)pg | 405.jpg | 407.jpg | 408.jpg  | 412.jpg | 401,jpg<br>414,jpg | 403-JPG<br>devices of the second of the terms<br>of devices of post-terms of the terms<br>in the second devices of the terms<br>of exception of the terms<br>of exception of the terms<br>of exception of the terms<br>of exception of the terms<br>the terms of the terms<br>of the terms of terms<br>of the terms of the terms<br>of the terms of terms<br>of the terms of terms<br>of the terms of terms<br>of terms of terms of terms of terms<br>of terms of terms of terms of terms<br>of terms of terms of terms of terms of terms<br>of terms of terms of terms of terms of terms<br>of terms of terms |  |
|         |         |         |          |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |



Texture Dataset



| Uncontrolled Texture Synthesis |                                       |        |             | Self-tuning | CNNMRF | SWD                      | SinGAN | TexExp     | Ours  |      |
|--------------------------------|---------------------------------------|--------|-------------|-------------|--------|--------------------------|--------|------------|-------|------|
|                                |                                       |        |             | ColorDis    | 2.65   | 23.16                    | 24.21  | 15.72      | 25.32 | 9.40 |
| Source Texture                 | Self-tuning                           | CNNMRF | Sliced Wass | erstein     | SinGAN | TexE                     | xp     | 0          | urs   | _    |
|                                | · · · · · · · · · · · · · · · · · · · |        |             |             |        | 4. 4. 4<br>3. 4 . 4<br>4 |        | •••<br>••• |       |      |
|                                |                                       |        |             |             |        |                          |        |            |       |      |
|                                |                                       |        |             |             |        |                          |        |            |       |      |





#### **Uncontrolled Texture Synthesis**

|            | Self-tuning | CNNMRF | SWD   | SinGAN | TexExp | Ours |
|------------|-------------|--------|-------|--------|--------|------|
| User Pref. | 47.3%       | 33.1%  | 31.5% | 9.57%  | 33.0%  | -    |



#### User Study





### **Controlled Synthesis: Annotation**









#### **Controlled Synthesis: Annotation**



Ours





CNNMRF

Sliced Wasserstein







#### **Controlled Synthesis: Progression**









### **Controlled Synthesis: Progression**





















#### **Controlled Synthesis: Progression + Orientation**







#### **Controlled Synthesis: Progression + Orientation**







≻ Train TextureNets [Ulyanov et al., 2016] using Guided Correspondence loss.











[Ulyanov et al. Texture Networks: Feed-forward Synthesis of Textures and Stylized Images. 2016]



≻ Train SPADE [Park et al., 2019] using Guided Correspondence loss.



Source Guidance Map

Source Texture



[Park et al. Semantic Image Synthesis with Spatially-Adaptive Normalization. 2019]



#### ≻ Train SPADE [Park et al., 2019] using Guided Correspondence loss.







≻ Train SPADE [Park et al., 2019] using Guided Correspondence loss.







Visual Computing Research Cente

#### ≻ Train SPADE [Park et al., 2019] using Guided Correspondence loss.







➤ Train SPADE [Park et al., 2019] using Guided Correspondence loss.



Based on Progression Map





Based on Orientation Map



➤ Train SPADE [Park et al., 2019] using Guided Correspondence loss.





# Applications







> Replace the Gram loss with our Guided Correspondence loss.









Constrain the texture optimization to fill the holes only using source patches from the remaining area of the same image.







# Single-image Editing

> Add the Guided Correspondence loss to the inversion-based image editing.



Target Mask & Image

[Wang et al., IMAGINE: image synthesis by image guided model inversion. 2021]





# Single-image Editing

> Add the Guided Correspondence loss to the inversion-based image editing.





[Wang et al., IMAGINE: image synthesis by image guided model inversion. 2021]









# Thank you

#### **Neural Texture Synthesis with Guided Correspondence**



Controlled Texture Optimization with Guidance Maps

Real-time Synthesis with Orientation Control

https://vcc.tech/research/2023/DeepTex