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Texture Optimization
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Image Inpainting
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Single-image Editing
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ℒ𝐶𝑙𝑎𝑠𝑠 + ℒ𝐺𝐶Source Mask Target MaskSource Image



Background

Example-based texture synthesis
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Source Texture
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Classical approaches
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Markov Random Field (MRF)-based Texture Optimization:

• Goal: optimize all overlapping output patches to be similar to their nearest neighbor in the input

[Kwatra et al. Texture Optimization for Example-based Synthesis. 2005]

Source Texture

Target Texture
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[Kwatra et al. Texture Optimization for example-based Synthesis. 2005]

Texture Optimization

Source Texture

Target Texture

Nearest Neighbor Search
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Pixel Update

Markov Random Field (MRF)-based Texture Optimization:

• Goal: optimize all overlapping output patches to be similar to their nearest neighbor in the input.



Classical approaches
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[Kwatra et al. Texture Optimization for example-based Synthesis. 2005]

Texture Optimization

Source Texture

Target Texture

Nearest Neighbor Search

Source Texture

Target Texture

Pixel Update

Textures are optimized gradually along with the iteration.

Markov Random Field (MRF)-based Texture Optimization:

• Goal: optimize all overlapping output patches to be similar to their nearest neighbor in the input.



Deep learning based approaches
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Align the statistics of deep features 

[Gatys et al. Image Style Transfer Using Convolutional Neural Networks. 2016]
𝓛𝑮𝒓𝒂𝒎

Gram Loss

[Heitz et al. A Sliced Wasserstein Loss for Neural Texture Synthesis. 2021]

𝓛𝑺𝑾 Sliced Wasserstein Loss

𝓛𝑮𝒓𝒂𝒎



Deep learning based approaches

可视计算研究中心
Visual Computing Research Center

Align the statistics of deep features 

[Gatys et al. Image Style Transfer Using Convolutional Neural Networks. 2016]
𝓛𝑮𝒓𝒂𝒎

Gram Loss

[Heitz et al. A Sliced Wasserstein Loss for Neural Texture Synthesis. 2021]

𝓛𝑺𝑾 Sliced Wasserstein Loss

Only suitable for 
Homogeneous Textures!!!

Source Texture

Sliced Wasserstein loss



Deep learning based approaches

可视计算研究中心
Visual Computing Research Center

GAN-based Methods

[Zhou et al. Non-Stationary Texture Synthesis by Adversarial Expansion. 2018]

𝑻𝒆𝒙𝑬𝒙𝒑 Texture Expansion Networks

[Shaham et al. Learning a Generative Model from a Single Natural Image. 2019]

𝑺𝒊𝒏𝑮𝑨𝑵 Single Image Generative Adversarial Networks



Deep learning based approaches
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GAN-based Methods

[Zhou et al. Non-Stationary Texture Synthesis by Adversarial Expansion. 2018]

𝑻𝒆𝒙𝑬𝒙𝒑 Texture Expansion Networks

[Shaham et al. Learning a Generative Model from a Single Natural Image. 2019]

𝑺𝒊𝒏𝑮𝑨𝑵 Single Image Generative Adversarial Networks

Suffer from visual 
artifacts!!!

SinGANTexExp

Source Texture



CNNMRF
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𝑪𝑵𝑵𝑴𝑹𝑭 CNNMRF (Convolution Neural Network + MRF)

• Nearest Neighbor Search: Color → Deep Feature

• Pixel Update: Color Averaging → Loss Back-propagation

[Li et al. Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis. 2016]

Loss calculationNearest Neighbor Search

Source Texture 𝐼𝑠

Feature Extractor

Source Feature 𝐹𝑠 Target Feature 𝐹𝑡

Feature Extractor

Target Texture 𝐼𝑡
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𝑪𝑵𝑵𝑴𝑹𝑭 CNNMRF (Convolutional Neural Network + MRF)

• Nearest Neighbor Search: Color → Deep Feature

• Pixel Update: Color Averaging → Loss Back-propagation

[Li et al. Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis. 2016]

Loss calculationNearest Neighbor Search

Source Texture 𝐼𝑠

Feature Extractor

Source Feature 𝐹𝑠 Target Feature 𝐹𝑡

Feature Extractor

Target Texture 𝐼𝑡

Backpropagation

Source Texture B

Synthesized Texture B

2) Blurry Issue!!!1) Repetition Issue!!!

Source Texture A

Synthesized Texture A



Guided Correspondence Distance
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𝑑𝑖𝑗 = 𝑑𝑖𝑗
𝑉𝐺𝐺 + 𝜆𝐺𝐶 ∗ 𝑑𝑖𝑗

𝐺𝐶 + 𝜆𝑜𝑐𝑐 ∗ 𝑑𝑗
𝑜𝑐𝑐

Distance definition:

Deep 
Feature 
Distance

Cosine similarity

Guided 
Feature 
Distance

Guided similarity measure

(depends on the type of guidance channel)

Occurrence 
Penalty

Guided 
Correspondence
Distance

Target patch i and

source patch j



Guided Correspondence Distance
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Occurrence penalty for solving the repetition issue.

• To prevent a source patch from being repeatedly selected as the correspondence.

Target Feature Map 𝐹𝑡

Source Feature Map 𝐹s

𝑷𝒔(𝑵𝑵
𝟎(𝒊))

𝑷𝒕(𝒊)

𝑑𝑖𝑗
0 = 𝑑𝑖𝑗

𝑉𝐺𝐺 + 𝜆𝐺𝐶 ∗ 𝑑𝑖𝑗
𝐺𝐶

𝑑𝑖𝑗 = 𝑑𝑖𝑗
𝑉𝐺𝐺 + 𝜆𝐺𝐶 ∗ 𝑑𝑖𝑗

𝐺𝐶 + 𝜆𝑜𝑐𝑐 ∗ 𝑑𝑗
𝑜𝑐𝑐

Calculate the approximate nearest neighbor field

Source 

Occurrence 

Map 𝑶𝒔



Guided Correspondence Distance

可视计算研究中心
Visual Computing Research Center

• Ablation study on occurrence penalty

𝜆𝑜𝑐𝑐 = 0 𝜆𝑜𝑐𝑐 = 0.005 𝜆𝑜𝑐𝑐 = 0.05

Source Texture



Guided Correspondence Loss

Blurry issue is caused by nearest neighbor inconsistency over the iterations

Target Sample Source Sample Nearest Neighbor Repulse Attract

Minimizing the conventional L2-distance makes the optimization favor the average of nearby samples.



Guided Correspondence Loss
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Contextual similarity requires a target sample to be significantly closer to its nearest 

neighbor than to all other source samples.

[Mechrez et al. The contextual loss for image transformation with non-aligned data. 2018]

𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

Target Sample Source Sample Nearest Neighbor Repulse Attract



Guided Correspondence Loss
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1. Normalize the distance and convert it to similarity:

2. Introduce contextual information to obtain contextual similarity：

3. Calculate the Guided Correspondence loss ：

Contextual similarity requires a target sample to be significantly closer to its nearest 

neighbor than to all other source samples.



Guided Correspondence Loss
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• Ablation study: ℒ2-based loss vs. ℒ𝐺𝐶 loss 

·

ℒ2-based

Ours
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Experiments
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Texture Dataset



Uncontrolled Texture Synthesis
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Sliced Wasserstein SinGANSelf-tuning CNNMRF TexExpSource Texture Ours
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Uncontrolled Texture Synthesis

User Study



Controlled Synthesis:
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𝑖 𝑗Annotation



Controlled Synthesis: Annotation
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𝑖 𝑗

Ours CNNMRF Sliced Wasserstein



Controlled Synthesis: Progression
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𝑖 𝑗

Target 

Progression
[Zhou et al. 2017] Ours
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Controlled Synthesis: Progression
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Controlled Synthesis: Orientation
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Controlled Synthesis: Orientation
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Controlled Synthesis: Progression + Orientation
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[Zhou et al. 2017] Ours
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Controlled Synthesis: Progression + Orientation
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Real-time Texture Synthesis
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 Train TextureNets [Ulyanov et al., 2016] using Guided Correspondence loss.

[Ulyanov et al. Texture Networks: Feed-forward Synthesis of Textures and Stylized Images. 2016]



Real-time Texture Synthesis

可视计算研究中心
Visual Computing Research Center

 Train TextureNets [Ulyanov et al., 2016] on a given stationary texture.

[Ulyanov et al. Texture Networks: Feed-forward Synthesis of Textures and Stylized Images. 2016]

Source 

Texture

Ours

Sliced 

Wasserstein



Real-time Controlled Synthesis
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 Train SPADE [Park et al., 2019] using Guided Correspondence loss.

SPADE

Source Guidance Map Source Texture

[Park et al. Semantic Image Synthesis with Spatially-Adaptive Normalization. 2019]



Real-time Controlled Synthesis
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 Train SPADE [Park et al., 2019] using Guided Correspondence loss.
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 Train SPADE [Park et al., 2019] using Guided Correspondence loss.



Real-time Controlled Synthesis

可视计算研究中心
Visual Computing Research Center

Based on Progression Map

Based on Orientation Map

 Train SPADE [Park et al., 2019] using Guided Correspondence loss.
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Target Guidance Map ℒ𝑐𝐺𝐴𝑁 ℒ𝐺𝐶 ℒ𝑐𝐺𝐴𝑁+ℒ𝐺𝐶 ℒ𝑐𝐺𝐴𝑁+ℒ𝑆𝑊

Source Guidance Map

Source Texture

Real-time Controlled Synthesis

 Train SPADE [Park et al., 2019] using Guided Correspondence loss.



Applications
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Texture Transfer
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 Replace the Gram loss with our Guided Correspondence loss.
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Image



Image Inpainting
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 Constrain the texture optimization to fill the holes only using source patches from 

the remaining area of the same image.



Single-image Editing
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 Add the Guided Correspondence loss to the inversion-based image editing.

ResNet50

VGG-19

Source Mask & Image

ℒ𝐺𝐶

ℒ𝐶𝑙𝑎𝑠𝑠

Target Mask & Image

[Wang et al., IMAGINE: image synthesis by image guided model inversion. 2021]



Single-image Editing
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 Add the Guided Correspondence loss to the inversion-based image editing.

ResNet50

VGG-19

Source Mask & Image

ℒ𝐺𝐶

ℒ𝐶𝑙𝑎𝑠𝑠

Target Mask & Image

[Wang et al., IMAGINE: image synthesis by image guided model inversion. 2021]



Thank you

https://vcc.tech/research/2023/DeepTex
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