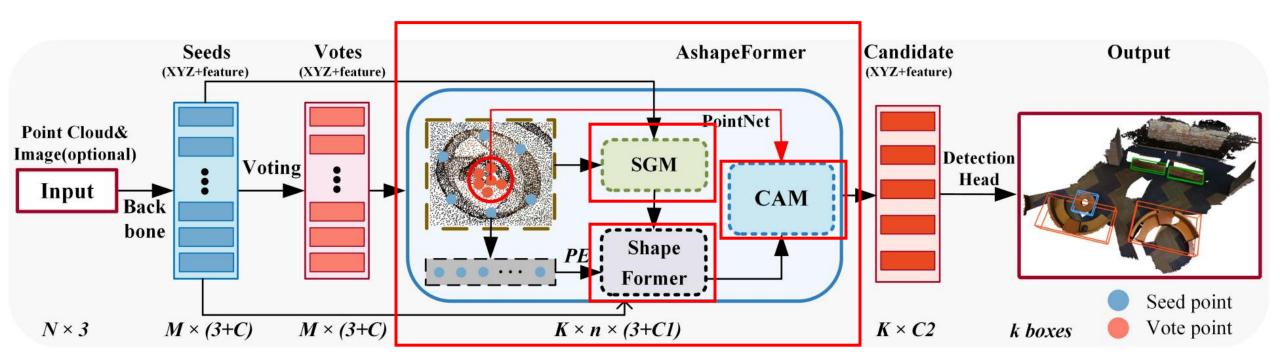


AShapeFormer : Semantics-Guided Object-Level Active Shape Encoding for 3D Object Detection via Transformers

Zechuan Li¹ , Hongshan Yu¹ , Zhengeng Yang¹ , Tongjia Chen¹ , Naveed Akhtar² ¹Hunan University ²The University of Western Australia

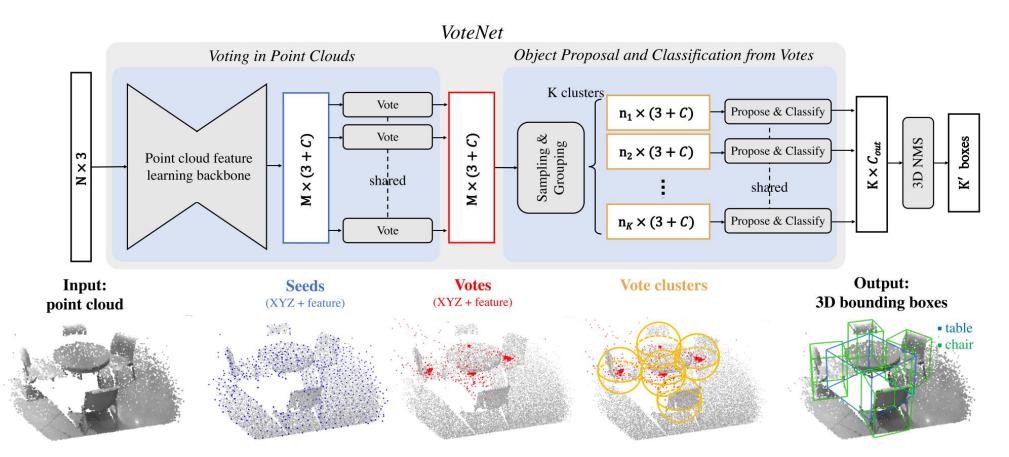
AShapeFormer Overview

- We propose a plug-and-play active shape encoding module named AShapeFormer, which can be combined with many existing 3D object detection networks to achieve a considerable performance boost.
- ➤To the best of our knowledge, our method is the first to combine multi-head attention and semantic guidance to encode strong object shape features for robust classification and accurate bounding box regression.
- ≻AShapeFormer mainly includes three sub-modules, ShapeFormer ,SGM and CAM.



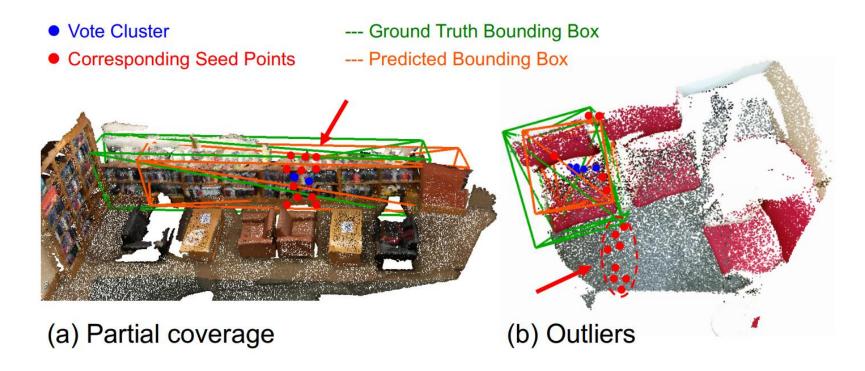
Motivation:

Most voting-based 3D object detection techniques commonly follow a pipeline that aggregates predicted object central point features to compute candidate points.



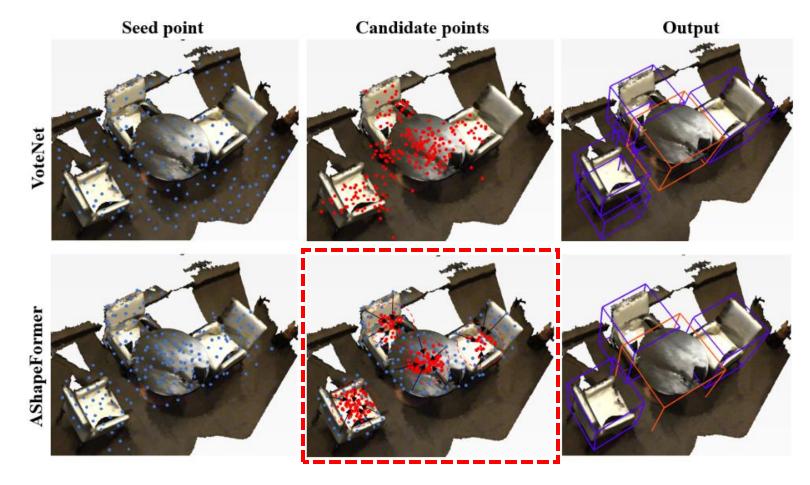
Motivation:

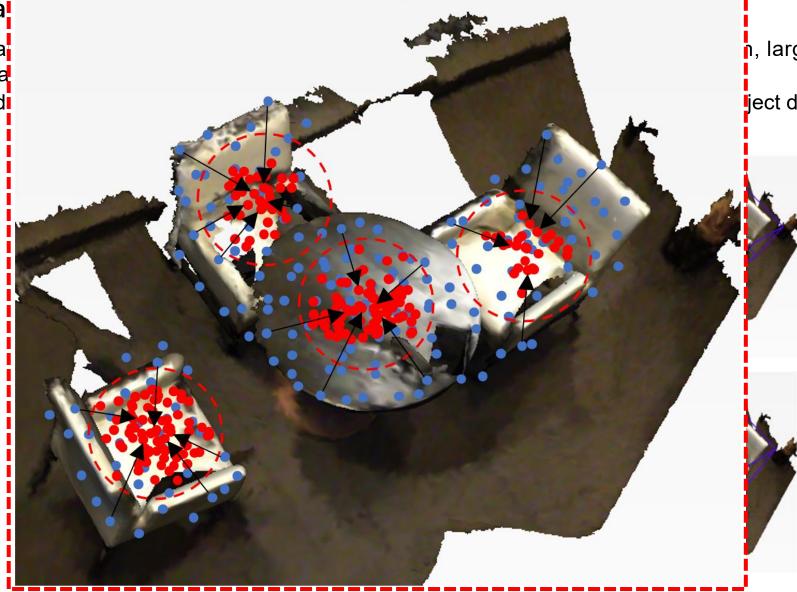
- The candidate points in the voting-based method only contain position information, largely ignoring the object-level shape information.
- ≻Candidate points contain background points that may affect the performance of 3D object detection.



Motivation:

- A CONTRACTOR OF THE PARTY OF TH
- The candidate points in the voting-based method only contain position information, largely ignoring the object-level shape information.
- ≻Candidate points contain background points that may affect the performance of 3D object detection.

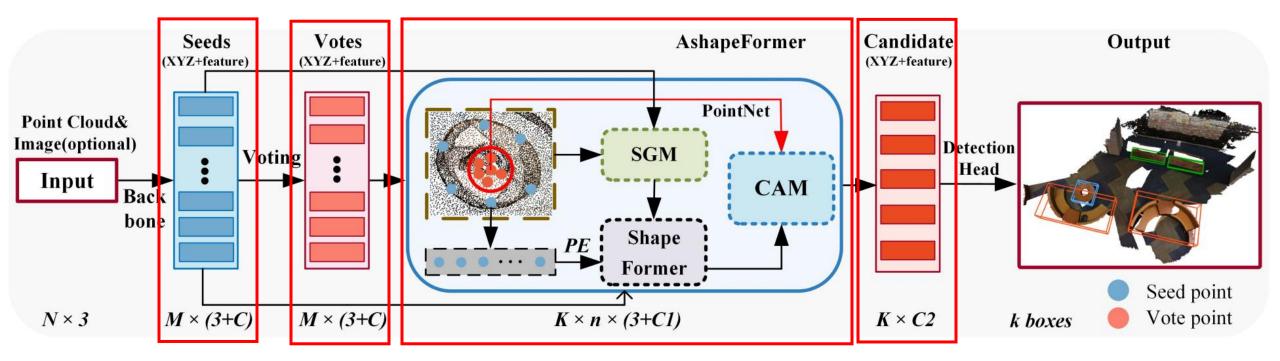




n, largely ignoring the object-level shape

ject detection.

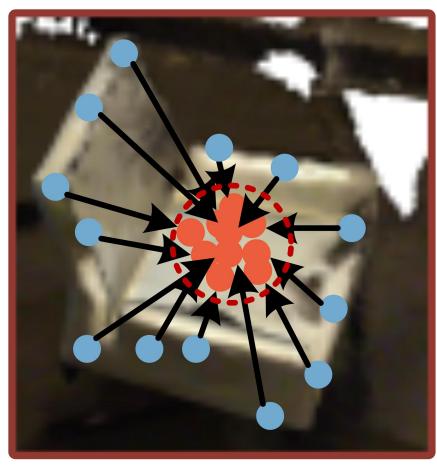
AShapeFormer:



Innovations and contributions:

- (1) ShapeFormer: Actively encode object-level shape features using the Transformers module.
- (2) Semantics Guided Module (SGM): Pay more attention to the foreground points.
- (3) Channel Attention Module (CAM): Fuse the shape information enriched features with candidate features.

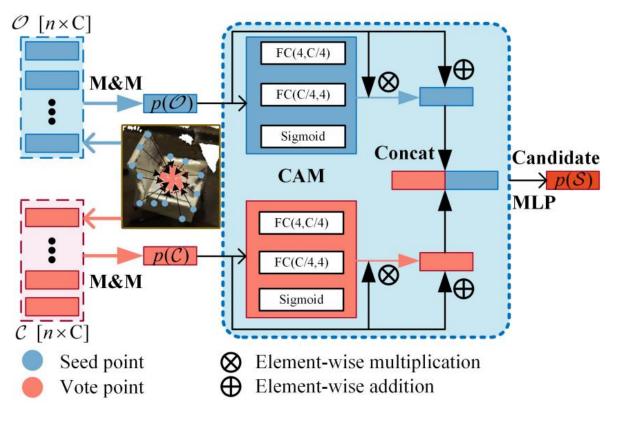
Naïve Object-Level Shape Encoding:



Problems:

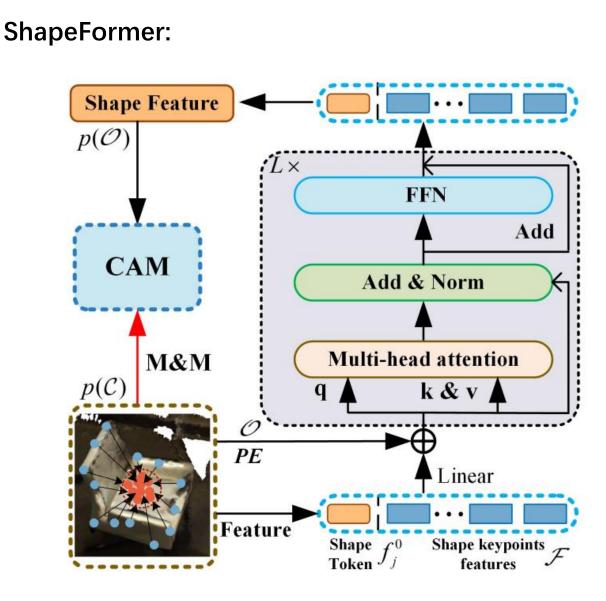
➢loss of fine-grained information

>marred by interference of the background points.



$$\begin{split} p(\mathcal{C}) &= \operatorname{MaxPool}\left(\operatorname{MLP}\left(\mathcal{C}\right)\right) \quad p(\mathcal{O}) = \operatorname{MaxPool}\left(\operatorname{MLP}\left(\mathcal{O}\right)\right) \\ p(\mathcal{S}) &= \operatorname{Concat}\left(\operatorname{CAM}(p(\mathcal{C}),\operatorname{CAM}\left(p(\mathcal{O})\right)\right) \end{split}$$

 $\overline{}$



ShapeFormer: $q = zW_q, k = zW_k, v = zW_v$ $y' = \sum \operatorname{softmax}\left(\frac{qk^{\intercal}}{\sqrt{d}}\right) v$ $y = \text{Concat}\left(y'^{(0)}, y'^{(1)}, \dots, y'^{(m-1)}\right)$ $\mathbf{o} = \mathcal{A}\left(\mathcal{F}\left(\mathcal{A}\left(y\right)\right)\right)$ $\mathbf{o}^{l} = \left[f_{j}^{0(l)}, f_{j}^{1(l)}, f_{j}^{2(l)}, \dots, f_{j}^{n(l)} \right]$ $p(\mathcal{O}) = \mathrm{MLP}\left(f_j^{0(l)}\right)$ 1.2

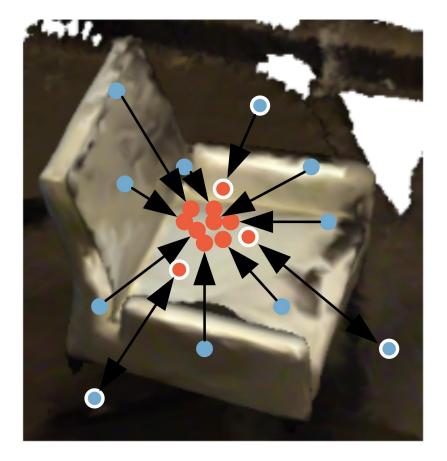
Object-Scene Positional Encoding:

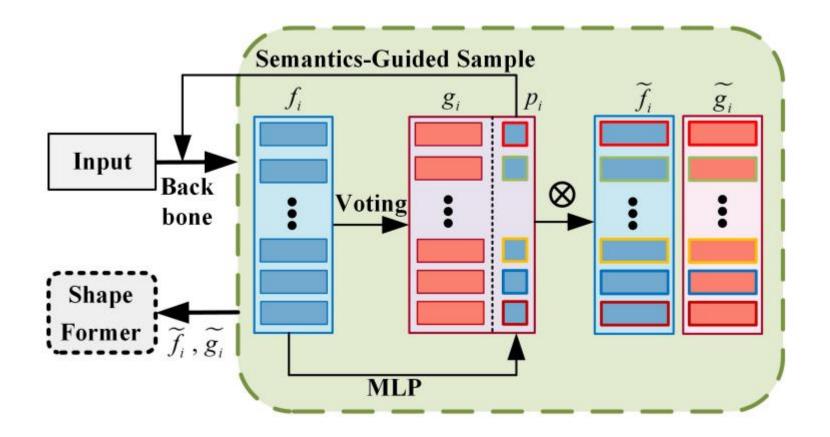
$$PE = PE_s + PE_o,$$

$$PE_s = MLP([x_c; x_1, x_1 \dots, x_n]),$$

$$PE_o = MLP([\mathbf{0}; x_1 - x_c, x_1 - x_c \dots, x_n - x_c]),$$

Semantics Guided Module:





Quantitative comparison:

>We evaluate the performance of the proposed AShapeFormer on two popular datasets of indoor scenes, namely; ScanNet dataset [9] and SUN RGB-D dataset [38].

Model	mAP@0.25	bed	table	sofa	chair	toilet	desk	dresser	nightstand	shelf	bathtub
VoteNet [29]	57.7	83.0	47.3	64.0	75.3	90.1	22.0	29.8	62.2	28.8	74.4
VoteNet* [29]	59.7	84.8	49.6	67.8	77.6	87.4	24.3	29.3	61.9	32.1	82.1
BRNet [7]	61.1	86.9	51.8	66.4	77.4	91.3	29.6	35.9	65.9	29.7	76.2
Groupfree3D [23]	63.0	87.8	53.8	70.0	79.4	91.1	32.6	36.0	66.7	32.5	80.0
imVoteNet [28]	63.4	87.6	51.1	70.7	76.7	90.5	28.7	41.4	69.9	41.3	75.9
imVoteNet* [28]	64.5	88.5	51.6	73.2	79.2	90.2	30.9	38.0	67.3	46.4	79.7
RBGNet [42]	64.1	88.4	54.5	71.0	82.7	91.3	32.1	38.7	66.7	34.5	80.6
FCAF3D [34]	64.2	88.3	53.0	69.7	81.1	91.3	34.0	40.1	71.9	33.0	79.0
TokenFusion [44]	64.9	-	-	-	-	121	-	-	-5	12	-
DisARM [11]	65.3	87.5	52.7	74.1	80.7	91.6	33.3	39.8	69.5	43.7	79.9
Ours (VoteNet)	61.2(+3.5)	86.9	51.5	67.8	78.8	91.2	29.0	33.6	65.0	31.3	76.6
Ours (VoteNet*)	62.2(+2.5)	86.9	51.3	69.3	78.9	90.2	28.2	34.6	65.9	35.6	80.7
Ours (imVoteNet)	65.1(+1.7)	89.2	53.7	72.9	78.3	90.8	30.2	43.2	70.0	46.5	76.1
Ours (imVoteNet*)	65.8(+1.3)	87.6	55.2	72.8	80.9	92.5	31.2	45.8	67.7	43.7	80.9

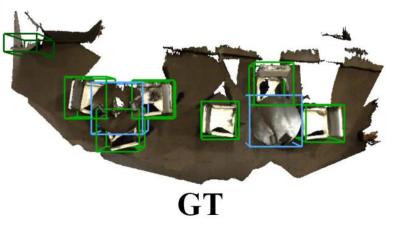
We achieve an absolute gain of more than 3.5% and 1.7% for VoteNet and imVoteNet, respectively.

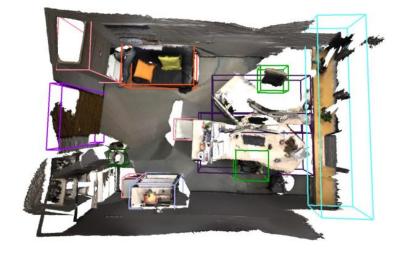
Quantitative comparison:

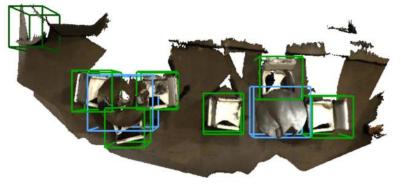
Model	mAP	cab	bed	chair	sofa	table	door	wind	b kshf	pic	cntr	desk	curt	fridg	showr	toil	sink	bath	ofurn
3D-SIS [7]	22.5	5.7	50.2	52.5	55.4	21.9	10.8	0.0	13.1	0.0	0.0	23.6	2.6	24.5	0.8	71.7	8.9	56.4	6.8
HGNet [1]	34.4	-	-	2	-	-	-	-	-	-	20	87 4 0	÷2	-	(1)	-	-	-	-
VoteNet [17]	33.5	8.0	76.0	67.2	68.8	42.3	15.3	6.4	28.0	1.25	9.5	37.5	11.5	27.8	9.9	86.5	16.7	78.8	11.6
VoteNet* [17]	44.2	23.1	77.7	76.7	70.6	46.9	30.4	15.7	45.7	4.6	27.4	49.8	30.0	36.9	20.9	90.7	32.5	83.3	28.4
MLCVNet [20]	42.1	16.6	83.3	78.1	74.7	55.1	28.1	17.0	51.7	3.7	13.9	47.7	28.6	36.3	13.4	70.9	25.6	85.7	27.5
3DETR [11]	47.0	-	-	-	-	-	-	-	-	-	20	-	-	-	-	-	-	-	-
GroupFree3D [9]	52.8	26.0	81.3	82.9	70.7	62.2	41.7	26.5	55.8	7.8	34.7	67.2	43.9	44.3	44.1	92.8	37.4	89.7	40.6
RBGNet [19]	54.2	30.6	80.9	86.5	84.8	66.4	40.3	29.5	48.6	7.9	44.7	59.1	40.8	44.8	39.7	92.9	45.3	90.9	41.5
Ours(VoteNet)	41.6(+8.1)	20.1	80.8	76.1	70.2	53.6	31.5	14.7	30.4	5.4	25.5	33.1	27.3	35.5	13.6	89.1	30.5	89.7	22.2
Ours(VoteNet*)	47.8(+3.6)	25.3	81.1	80.8	71.3	56.8	33.3	20.9	53.8	6.1	33.8	56.9	29.2	38.0	33.4	86.5	40.1	80.3	30.9
Ours(GroupFree3D)	53.4(+0.6)	30.3	82.5	82.5	74.2	64.6	39.8	26.7	56.2	6.8	34.2	69.9	47.3	41.6	43.2	89.9	39.9	91.1	40.8
Ours(RBGNet)	56.6(+1.4)	31.0	82.2	86.9	87.7	67.6	43.1	35.4	57.2	13.2	34.8	59.8	37.2	52.8	50.0	97.6	43.7	91.0	46.4

Obtained 8.1% performance improvement on the ScanNet V2 dataset

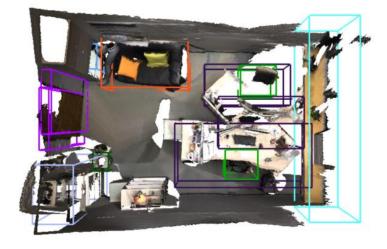
Qualitative comparison:

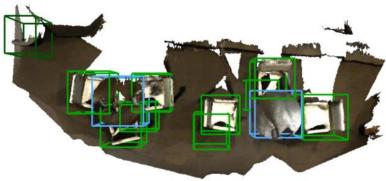






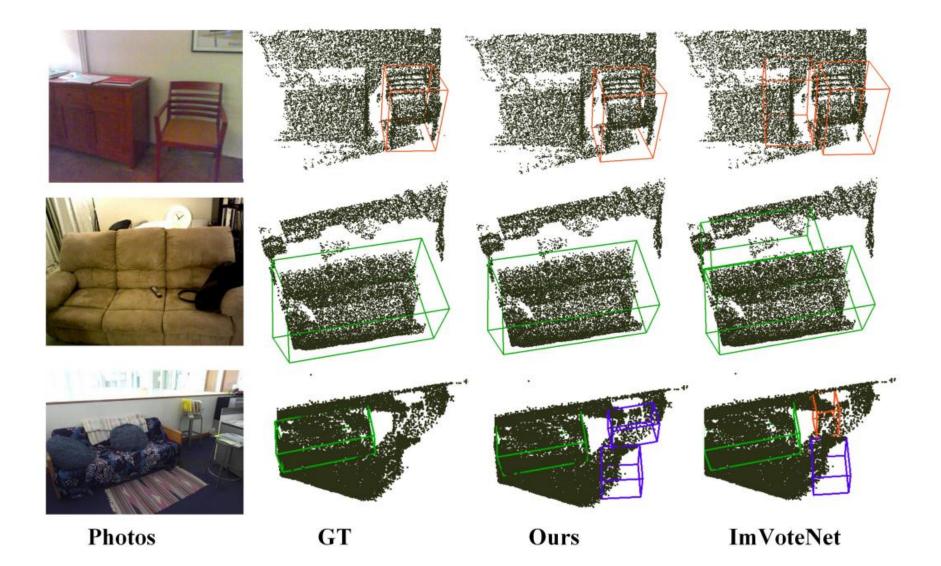
Ours



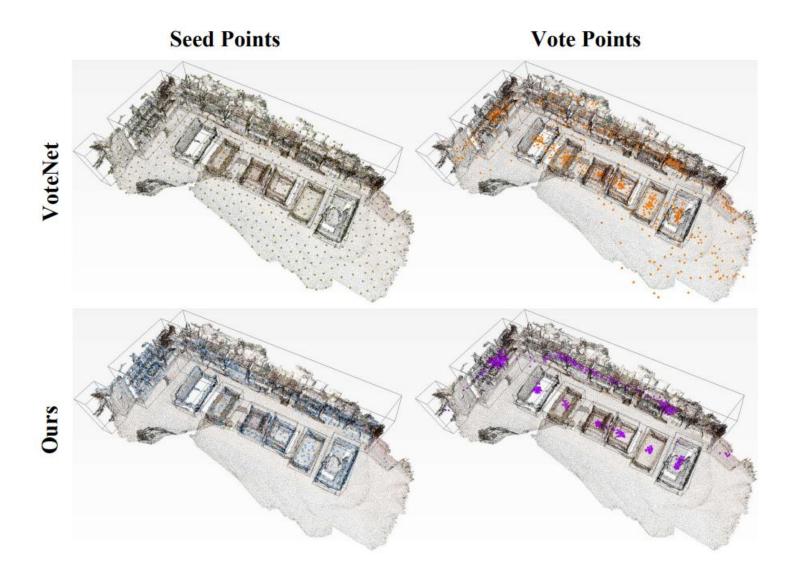


VoteNet

Qualitative comparison:



Qualitative comparison:



Conclusion

➤We proposes a plug-n-play module to improve the performance of indoor 3D object detection by actively encoding shape information of the object.

- ➤We sample the shape key points of the object and re-weight their features by guiding them with semantic information.
- >we utilize multi-head attention to encode object shape features to avoid the loss of fine-grained information.
- Results show that our model achieves state-of-the-art performance when assembled with existing methods.

Thank you

