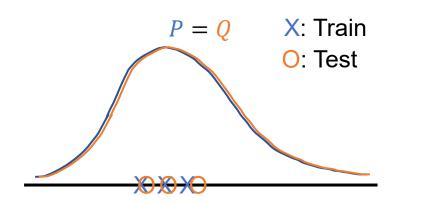


Robust Test-time Adaptation in Dynamic Scenarios

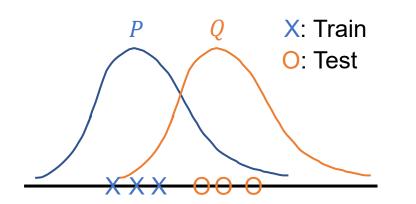
Longhui Yuan, Binhui Xie, Shuang Li*

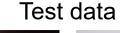
Beijing Institute of Technology

WED-PM-340


Summary

- Problem setup: Practical Test-Time Adaptation (PTTA)
 - distribution change & correlative sampling
- Method: Robust Test-Time Adaptation (RoTTA)
 - robust statistics estimation & category-balanced sampling & time-aware reweighting
- Experiments
 - Performance gain: 5.9% on CIFAR-10-C, 5.5% on CIFAR-100-C, and 2.2% on DomainNet


• When training data and test data come from the same distribution, deep learning achieves excellent performance.

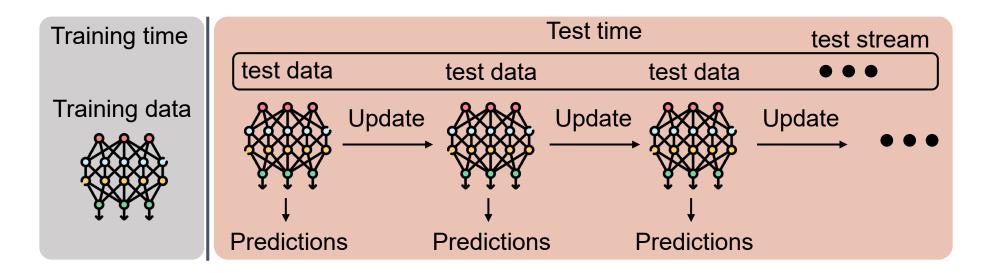

Distribution Shift

- When training data and test data come from the same distribution, deep learning achieves excellent performance.
- In real world: distribution shifts exist everywhere.

Distribution Shift

- When training data and test data come from the same distribution, deep learning achieves excellent performance.
- In real world: distribution shifts exist everywhere.

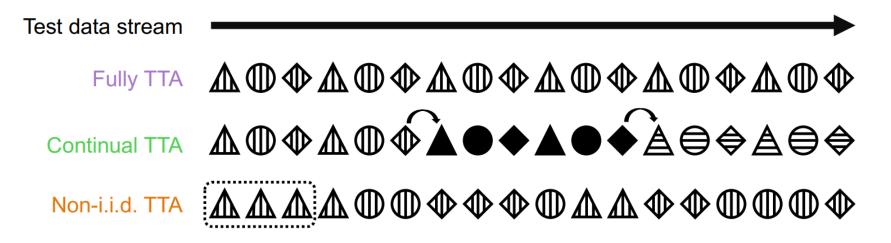
Adapting deep models to new domains is critical


Test-time Adaptation

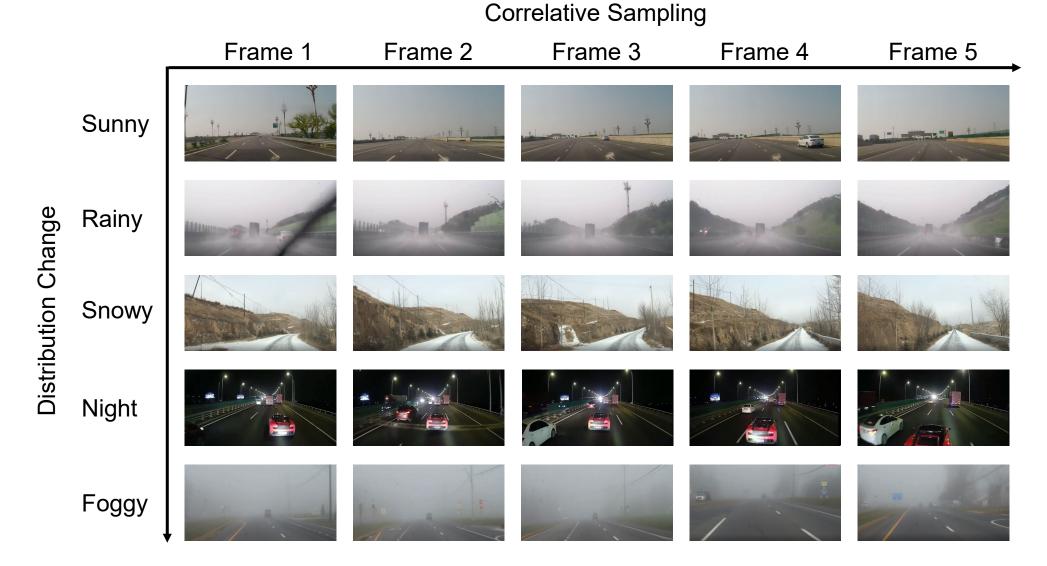
• Test-time adaptation (TTA) attempts to address distribution shifts during the inference stage.

JUNE 18-22, 2023 CCVPR VANCOUVER, CANADA

Test-time Adaptation

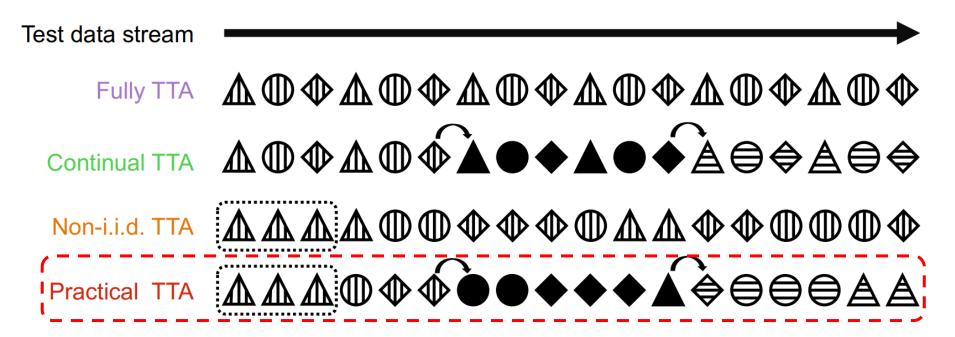

• Test-time adaptation (TTA) attempts to address distribution shifts during the inference stage.

Test-time Adaptation



- Test-time adaptation (TTA) attempts to address distribution shifts during the inference stage.
- Existing setup: Fully TTA, Continual TTA, Non-i.i.d. TTA

Test Stream in Real World



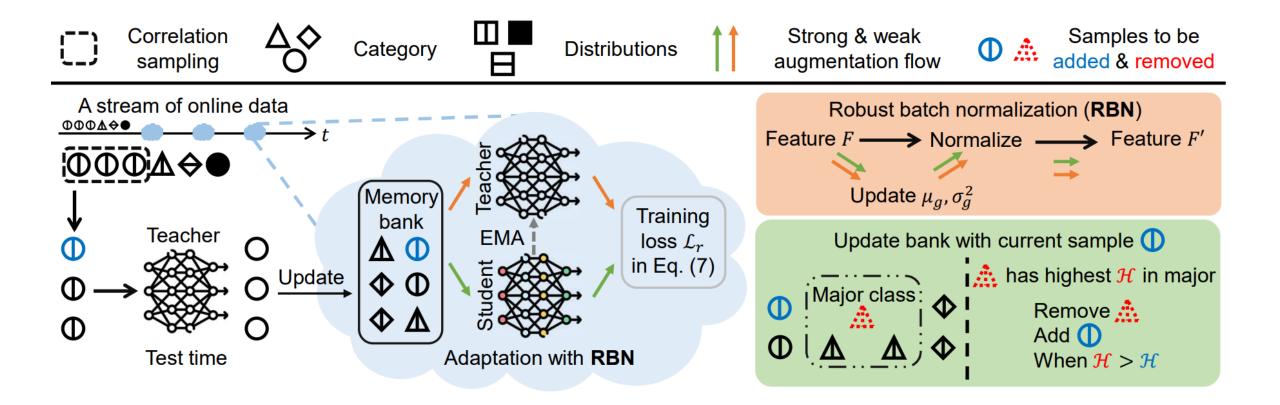
Practical Test-time Adaptation

A more practical test-time adaptation setup where distribution

change and correlative sampling occur simultaneously.

Practical Test-time Adaptation

- A more practical test-time adaptation setup where distribution change and correlative sampling occur simultaneously.
- Challenges:
 - Incorrect estimation in the batch normalization statistics
 - Easily or quickly overfit to the local distribution
 - Error gradients cumulate



Practical Test-time Adaptation

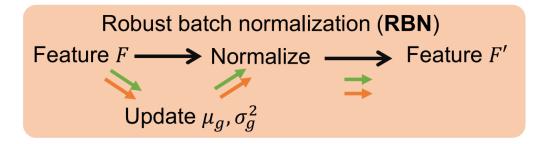
- A more practical test-time adaptation setup where distribution change and correlative sampling occur simultaneously.
- Formulate PTTA as:
 - Given a model f_{θ_0} pre-trained on source domain $\mathcal{D}_{\mathcal{S}} = \{(x_s, y_s)\}.$
 - A stream of unlabeled test samples $\mathcal{X}_0, \cdots, \mathcal{X}_T, \cdots$, where \mathcal{X}_t is a batch of correlated samples from distribution \mathcal{P}_{test} and \mathcal{P}_{test} changes as $\mathcal{P}_0, \mathcal{P}_1, \cdots, \mathcal{P}_{\infty}$.

Framework

- The correlation among test samples X_t at time t leads to a deviation between the observed distribution $\hat{\mathcal{P}}_{test}$ and the test distribution \mathcal{P}_{test} .
- Directly adapting on $\hat{\mathcal{P}}_{test}$ leads overfitting \times
- Maintaining a category-balanced memory bank

- The balance among categories is guaranteed by distributing the capacity of \mathcal{M} equally to each category (refer to lines 5 9)
- Heuristic score of timeliness and uncertainty

$$\mathcal{H} = \lambda_t \frac{1}{1 + \exp(-\mathcal{A}/\mathcal{N})} + \lambda_u \frac{\mathcal{U}}{\log \mathcal{C}}$$


Algorithm 1: CSTU for one test sample.

1 Input: a test sample x and the teacher model f_{θ^T} . **2 Define:** memory bank \mathcal{M} and its capacity \mathcal{N} , number of classes C, per class occupation $\mathcal{O} \in \mathbf{R}^{\mathcal{C}}$, total occupation Ω , classes to pop instance \mathcal{D} . 3 Infer as $p(y|x) = \text{Softmax}(f_{\theta^T}(x))$. 4 Calculate the predicted category of x as $\hat{y} = \arg \max_{c} p(c|x)$, the uncertainty as $\mathcal{U}_x = -\sum_{c=1}^{C} p(c|x) \log(p(c|x))$, the age as $\mathcal{A}_x = 0$, and the heuristic score \mathcal{H}_x of x with Eq (6) 5 if $\mathcal{O}_{\hat{y}} < \frac{N}{C}$ then if $\Omega < \mathcal{N}$: Search range $\mathcal{D} = \emptyset$. else: Search range $\mathcal{D} = \{j | j = \arg \max_{c} \mathcal{O}_{c}\}$ 8 else 9 Search range $\mathcal{D} = \{\hat{y}\}$ 10 if \mathcal{D} is \emptyset then 11 Add $(x, \hat{y}, \mathcal{H}_x, \mathcal{U}_x)$ into \mathcal{M} . 12 else Find the instance $(\hat{x}, y_{\hat{x}}, \mathcal{A}_{\hat{x}}, \mathcal{U}_{\hat{x}})$ with the 13 highest value in Eq (6) $\mathcal{H}_{\hat{x}}$ among \mathcal{D} . if $\mathcal{H}_{x} < \mathcal{H}_{\hat{x}}$ then 14 Remove $(\hat{x}, y_{\hat{x}}, \mathcal{A}_{\hat{x}}, \mathcal{U}_{\hat{x}})$ from \mathcal{M} . 15 Add $(x, \hat{y}, \mathcal{H}_x, \mathcal{U}_x)$ into \mathcal{M} . 16 17 else Discard x. 18 19 Increase the age of all instances in \mathcal{M} .

- High correlation also makes the wildly used Test-time BN invalid
- Maintain a group of global statistics from the memory bank, and adopt it for inference

$$\mu_g = (1 - \alpha)\mu_g + \alpha\mu_b$$
$$\sigma_g^2 = (1 - \alpha)\sigma_g^2 + \alpha\sigma_b^2$$

> Training objective at time t:

$$\min_{\theta_{t+1}^{S}} \mathcal{L}_{r} = \frac{1}{\Omega} \sum_{i=1}^{\Omega} \mathcal{L}(x_{i}^{\mathcal{M}}, \mathcal{A}_{i}; \theta_{t}^{T}, \theta_{t}^{S}) = \frac{1}{\Omega} \sum_{i=1}^{\Omega} E(\mathcal{A}_{i}) \ell(x_{i}', x_{i}'')$$

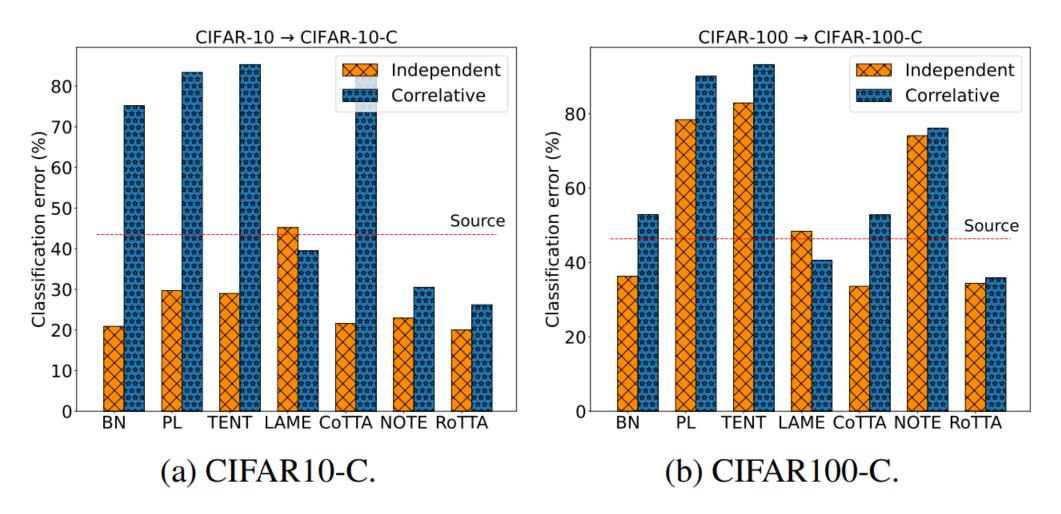
$$E(\mathcal{A}_i) = \frac{\exp(-\mathcal{A}_i/\mathcal{N})}{1 + \exp(-\mathcal{A}/\mathcal{N})}, \qquad \ell(x'_i, x''_i) = -\frac{1}{\mathcal{C}} \sum_{c=1}^{\mathcal{C}} p_T(c|x'_i) \log(p_S(c|x''_i))$$

≻Update teacher model by EMA: $\theta_{t+1}^T = (1 - \nu)\theta_t^T + \nu \theta_{t+1}^S$.

Experiments

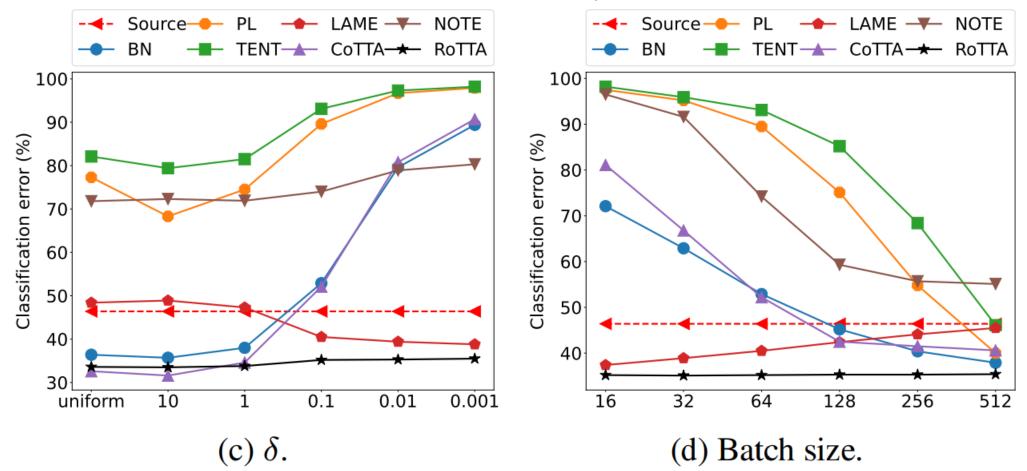
Table 2. Average classification error of the task CIFAR10 \rightarrow CIFAR10-C while continually adapting to different corruptions at the highest severity 5 with correlatively sampled test stream under the proposed setup PTTA.

Time	<i>t</i>														·····->	
Method	motion	SHOW	10 ⁸	Shot	defocus	contrast	10011	brightness	frost	elastic	91955	gaussian	pixelate	Hes	impulse	Avg.
Source	34.8	25.1	26.0	65.7	46.9	46.7	42.0	<u>9.3</u>	41.3	26.6	54.3	72.3	58.5	30.3	72.9	43.5
BN [53]	73.2	73.4	72.7	77.2	73.7	72.5	72.9	71.0	74.1	77.7	80.0	76.9	75.5	78.3	79.0	75.2
PL [39]	73.9	75.0	75.6	81.0	79.9	80.6	82.0	83.2	85.3	87.3	88.3	87.5	87.5	87.5	88.2	82.9
TENT [70]	74.3	77.4	80.1	86.2	86.7	87.3	87.9	87.4	88.2	89.0	89.2	89.0	88.3	89.7	89.2	86.0
LAME [5]	29.5	19.0	20.3	65.3	42.4	43.4	36.8	5.4	37.2	18.6	51.2	73.2	57.0	22.6	71.3	39.5
CoTTA [73]	77.1	80.6	83.1	84.4	83.9	84.2	83.1	82.6	84.4	84.2	84.5	84.6	82.7	83.8	84.9	83.2
NOTE [19]	18.0	22.1	20.6	<u>35.6</u>	<u>26.9</u>	13.6	<u>26.5</u>	17.3	<u>27.2</u>	37.0	<u>48.3</u>	<u>38.8</u>	<u>42.6</u>	41.9	<u>49.7</u>	<u>31.1</u>
RoTTA	<u>18.1</u>	<u>21.3</u>	18.8	33.6	23.6	<u>16.5</u>	15.1	11.2	21.9	<u>30.7</u>	39.6	26.8	33.7	<u>27.8</u>	39.5	25.2(+5.9)

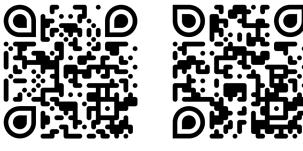

Table 3. Average classification error of the task CIFAR100 \rightarrow CIFAR100-C while continually adapting to different corruptions at the highest severity 5 with correlatively sampled test stream under the proposed setup PTTA.

Time	<i>t</i>														·····->	
Method	motion	SHOW	f08	\$hot	defocus	contrast	10011	bighters	frost	elastic	97922	gaussian	pixelate	. Hee	Impulse	Avg.
Source	30.8	39.5	50.3	68.0	29.3	55.1	28.8	29.5	45.8	37.2	54.1	73.0	74.7	41.2	39.4	46.4
BN [53]	48.5	54.0	58.9	56.2	$\overline{46.4}$	48.0	47.0	45.4	52.9	53.4	57.1	58.2	51.7	57.1	58.8	52.9
PL [39]	50.6	62.1	73.9	87.8	90.8	96.0	94.8	96.4	97.4	97.2	97.4	97.4	97.3	97.4	97.4	88.9
TENT [70]	53.3	77.6	93.0	96.5	96.7	97.5	97.1	97.5	97.3	97.2	97.1	97.7	97.6	98.0	98.3	92.8
LAME [5]	22.4	30.4	43.9	66.3	21.3	51.7	20.6	21.8	39.6	28.0	48.7	72.8	74.6	33.1	32.3	$\frac{40.5}{52.2}$
CoTTA [73]	49.2	52.7	56.8	<u>53.0</u>	48.7	51.7	49.4	48.7	52.5	52.2	54.3	<u>54.9</u>	49.6	53.4	56.2	52.2
NOTE [19]	45.7	53.0	58.2	65.6	54.2	52.0	59.8	63.5	74.8	91.8	98.1	98.3	96.8	97.0	98.2	73.8
RoTTA	<u>31.8</u>	<u>36.7</u>	40.9	42.1	30.0	33.6	<u>27.9</u>	<u>25.4</u>	32.3	<u>34.0</u>	38.8	38.7	31.3	<u>38.0</u>	42.9	35.0(+5.5)

Experiments


RoTTA achieves excellent results under various setup and distribution change orders

Experiments


Excellent and stable results prove the stability and effectiveness of RoTTA

Thank You~

Longhui Yuan

arXiv

Home Page

Email