

VectorFloorSeg: Two-Stream Graph Attention Network for Vectorized Roughcast Floorplan Segmentation

¹Bingchen Yang

¹Haiyong Jiang

²Hao Pan

¹Jun Xiao

¹University of Chinese Academy of Sciences

²Microsoft Research Asia

Introduction

Broad application scenarios of vector graphics (VG)

- editable
- arbitrary scaling, no loss of details, no cause of sawtooth
- Autonomous analysis of vector graphics is necessary for downstream applications

Introduction

Challenges of vectorized roughcast floorplan segmentation

• Irregularly structured data pose challenge on *directly* applying image backbone

Introduction

Disadvantages of rasterized floorplan segmentation

• jigsaw boundaries (red square) and fragmented semantic regions (blue circle)

How to segment on VG floorplans?

Graph duality

- Vector graphics can be viewed as graphs (drawing primitives as edges, endpoints as vertices)
- primitive extension leads to over-partitioned polygonal regions
- segmentation on the dual graph

How to leverage both graphs?

Unsatisfactory results solely based on dual graph

- fragmented segmentation still exists
- Remainder to use information in the primal graph

How to leverage both graphs?

- boundary lines pose room separation guidance
- lines (including extended lines) between different rooms are potential boundaries

How to leverage both graphs?

Edge correspondence as a bridge between two graphs

- graph neural network incorporates graph information into edges
- Information exchange can be established by edge correspondence

Methodology

Framework of VectorFloorSeg

Methodology

Modulated GAT

• calculate adaptive attention weights using edge feature from another stream of graph

Measurement: Room integrity

- (a) is less tolerable than (b) for downstream applications
- Room Integrity metric is proposed to penalize fragmented segments, by measuring the bipartite matching between predicted rooms and groundtruths

Outperforming other methods on two roughcast floorplan dataset

Methods	Backbone	Params(M)	GFLOPs	mIoU	mAcc	RI
DFPR [39]	VGG-16	28.91	223.39	69.47	81.5	50.96
Ours	_	22.57	91.63	75.56	87.32	80.48
DeepLabV3+[6]	ResNet-50	43.59	176.76	74.59	83.46	49.99
DNL [36]	_	50.02	200.16	71.61	81.90	51.99
UperNet [35]	_	66.41	237.02	73.23	83.84	63.46
Ours	-	33.29	115.15	79.77	88.41	84.67
OCRNet [38]	ResNet-101	55.51	231.11	77.98	85.34	70.82
Ours	-	51.39	193.01	81.38	89.86	86.20

Table 1. Comparison results on R2V.

Methods	Backbone	val-set			test-set		
		mIoU	mAcc	RI	mIoU	mAcc	RI
DFPR [39]	VGG-16	49.68	60.37	38.44	47.73	58.68	38.57
Ours	-	60.27	72.32	66.89	57.48	69.89	64.09
DeepLabV3+ [6]	ResNet-50	60.46	73.18	38.41	58.18	71.75	35.16
DNL [36]	—	59.61	72.15	42.38	55.29	68.36	40.49
UperNet [35]	_	59.31	72.22	45.90	57.04	70.50	44.71
Ours	_	63.09	75.48	69.74	61.35	74.45	67.99
OCRNet [38]	ResNet-101	60.44	72.94	43.99	57.13	70.62	41.89
Ours	—	64.36	76.98	69.55	62.49	75.48	67.51

Table 2. Comparison results on CubiCasa-5k.

Ablation studies on network setting

Vertex Embedding		Architecture		mIoII	mAcc	DI	
pos.	vertex samp.	backbone	p-stream	GAT Ours		mate	KI
					45.92	60.30	53.45
\checkmark					59.01	73.29	65.12
\checkmark	\checkmark				61.32	75.03	67.35
\checkmark	\checkmark	\checkmark			75.60	85.34	81.03
\checkmark	\checkmark	✓	✓		77.08	85.77	83.04
\checkmark	\checkmark	\checkmark	✓	\checkmark	79.77	88.41	84.67

Table 3. Ablation studies on vertex embedding and the network architecture. *pos.*: using sine positional encodings in Eq. 2. *vertex samp.*: using interior sampling (Eq. 3) to compute the dual vertex embedding. *backbone*: adding image features from rasterized floorplans. *p-stream*: with the primal stream that predicts boundary lines. *GAT Ours*: using the modulated GAT layer that enables feature interaction between two streams; if not marked, the GAT layer degrades to vanilla similarity-based attention [31] by replacing the learnt weight matrix $g(f_{*e_{ij}}^l)$ in Eq. 7 with an identity matrix. If none of the above is marked, pe_v of Eq. 2 is set to zero, and x_v is a learnable embedding indexed by vertex category (i.e. primal vertex or sampled vertex). $W_e(\cdot)$ and $W_{e^*}(\cdot)$ of Eqs. (4,5) are also set to zero.

dual map	edge ini.	mIoU	mAcc	RI
		77.38	86.37	83.95
\checkmark		78.22	87.67	83.06
\checkmark	\checkmark	79.77	88.41	84.67

Table 4. Ablation studies on edge features. *dual map*: using dual edge features from the other stream (cf. Fig. 2(III)); if not marked, the modulated GAT in each stream uses edge features from its own stream instead. *edge ini*.: using the edge embeddings of Eq. 4 and 5; if not marked, the edge embeddings are set to zero.

Thanks for listening!

https://github.com/DrZiji/VecFloorSeg