

A Unified Spatial-Angular Structured Light for Single-View Acquisition of Shape and Reflectance

Xianmin Xu¹ Yuxin Lin¹ Haoyang Zhou¹ Chong Zeng¹ Yaxin Yu¹ Kun Zhou^{1,2} Hongzhi Wu¹ ¹State Key Lab of CAD&CG, Zhejiang University ²ZJU-FaceUnity Joint Lab of Intelligent Graphics

CVPR2023 TAG: TUE-AM-020

- 1. Introduction
- 2. Related Work
- 3. Hardware Prototype
- 4. Depth Acquisition
- 5. Reflectance Capture
- 6. Results
- 7. Limitations and Future Work

1 Introduction

Motivation

• Active lighting in high-quality acquisition

HandySCAN 3D

1 Introduction

Acquisition Setup

• A novel lightweight acquisition setup acts as a restricted lightfield projector

1 Introduction

Pipeline

2 Related Work

Multi-Pattern Structured-Light

• Predetermined Patterns vs Optimized Patterns

MPS [Gupta et al. 2012] & EPS [Moreno et al. 2015]

A la Carte [Mirdehghan et al. 2018]

2 Related Work

Illumination Multiplexing

- Differentiable Acquisition [Kang et al. 2018; Kang et al. 2019; Ma et al. 2021]
 - Obtain high-fidelity reflectance results
 - Limitations: visibility not considered

Light Cube [Kang et al. 2019]

MatScan [Ma et al. 2021]

3 Hardware Prototype

Our Acquisition Setup

- RGB LEDs: 64 × 48 = 3, 072
- LCD Mask: resolution 1920×1080, size 59.8cm×33.6cm
- 45MP Canon EOS R5 Camera
- Valid Volume: 15cm \times 15cm \times 15cm

Our Lightweight Acquisition Setup

Differentiable Calibration

- Calibrate each LED individually (position, normal, size)
- Training data: correspondences between mask & image
- Optimize LED position and transformation of mask plane by stochastic gradient descent (SGD)

A Dense Set of Crosses on Board

Sample Candidates along Camera Ray

The number of mask pixels is limited, but we can sample any number of candidates.

Area Light Convolution

- The area light will perform **convolution operation** on the **binary** mask pattern.
- The code will change **continuously** along the camera ray.

Depth Decoding

Match: Find highest ZNCC(
$$c, m$$
) = $\frac{c - \text{mean}(c)}{||c - \text{mean}(c)||} \cdot \frac{m - \text{mean}(m)}{||m - \text{mean}(m)||}$

Mask Pattern Pretraining

• Cast to a multi-class classification problem

Multiple LEDs

- Simply concatenate the code and the measurements
- Geometric accuracy and completeness can be further improved

Reflectance Pipeline

Light Pattern Training

• Train autoencoder same as [Kang et al. 2018]

Acquisition

• Set mask to transparent

Differentiable Rendering

- Discard the decoder
- Consider visibility

GGX Parameters

32 Light Patterns

...

5 Reflectance Capture

Differentiable Optimization

Statistics

- Mask Pattern
 - Number: 18 for a single LED, 4 LEDs in total
 - Training: 15 minutes for a single LED

24 minutes

- Acquisition:
- Depth Decode 8 minutes
- Light Pattern
 - Number: 32
 - Acquisition: about 10 seconds
 - Reflectance Fine-tune: 1 hour

Learned Patterns and Photos

Mask Pattern

Light Pattern

Depth Comparisons

• We achieve on a average geometric accuracy of **0.27mm**

Reflectance Comparisons

• Our results outperform state-of-the-art method [Kang et al. 2019]

SSIM=0.96

SSIM=0.95

Ablation Study

• Impact of the number of mask patterns over reconstructed depth

Ablation Study

• Impact of the number of LEDs over reconstructed depths

Ablation Study

• Our learned patterns outperform the same number of randomly point lights

SSIM=0.95

SSIM=0.95

SSIM=0.96

SSIM=0.96

7 Limitations and Future Work

Conclusion

Acquisition Setup & Differentiable Calibration

Structure Light with Area Light

Reflectance Fine-tuning

Limitations

- Depth acquisition requires a long exposure time
- Multiple LEDs are manually selected
- Inter-reflection is not considered

Future Work

- Joint multiplexing of both LEDs and mask
- Adaptive acquisition pipeline
- Develop a handheld scanner with lightfield structured light

