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Semi-Supervised Learning mitigates the requirement for labeled by leveraging unlabeled data. 
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We employ an additional thresholding based on the APM values

Semi-Supervised Learning mitigates the requirement for labeled by leveraging unlabeled data. 



- Semi-Supervised Learning is a powerful approach for training 
models on a large amount of unlabeled data without requiring a 
large amount of labeled data.

- Since unlabeled data can often be obtained with minimal human 
labor, any performance boost conferred by SSL often comes with 
low cost.

Motivation
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Batch of Unlabeled Data
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Current Leading SSL Methods

First generate a pseudo-label by making predictions 
on weakly-augmented unlabeled examples.

FixMatch and FlexMatch



Current Leading SSL Methods

FixMatch and FlexMatch
To ensure high quality pseudo-labels, discard this 

example if the confidence of the prediction is below 
a confidence threshold.



Current Leading SSL Methods

FixMatch and FlexMatch

Examples that pass the threshold are used during 
training.



Current Leading SSL Methods

FixMatch and FlexMatch

Even with a very high confidence threshold, these methods still introduce errors.



Pseudo-label Data Quality Issues

Examples added to the training set with a wrong pseudo-label for FixMatch and FlexMatch. 

These incorrect pseudo-labels are particularly harmful for deep neural networks, 
which can attain zero training error on any dataset, even on randomly assigned labels 
[Zhang et al. 2016], resulting in poor generalization capabilities.



How can we improve pseudo-labeled data quality?

■ Previous models use confidence solely from the current iteration to enforce 
quality of pseudo-labels. 
− This provides only a myopic view of the model’s behavior (i.e., its 

confidence) on unlabeled data (at a single iteration) and may result in 
wrong pseudo-labels even when the confidence threshold is high enough 
(e.g., if the model is mis-calibrated or overly-confident).



MarginMatch

■ We propose MarginMatch, an SSL approach to improve pseudo-labeled data quality by 
monitoring the model’s training dynamics on unlabeled data.

■ MarginMatch leverages consistency regularization with weak and strong augmentations and 
pseudo-labeling.



Margins of Labeled Examples

Margin M at epoch t for                       [Pleiss et al., 2020]

Averaging the margins across the entire training 
yields the average margin of a labeled example.



Pseudo-Margins of Unlabeled Examples
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The model may have different argmax values at different iterations. This phenomenon is 
captured using averaged pseudo-margins.

t`:

c acts as “ground truth”.

c is the argmax of the model 
at iteration t.

Average Pseudo-Margin
(APM)



■ Examples with low APM are potentially mislabeled.

■ We use an APM threshold to eliminate erroneous examples:

Confidence Thresholding

APM Thresholding



Evaluation
■ Datasets:

− CIFAR-10
− CIFAR-100
− SVHN
− STL-10

− ImageNet
− WebVision

■ Performance measures: error rate/accuracy
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Conclusion and Future work

- We proposed a novel semi-supervised learning method that 
improves the pseudo-label quality using training dynamics. 

- Future work: 
− We aim to further explore our method in settings when there is a mismatch 

between the labeled and unlabeled data distributions (i.e., making use of 
out-of-domain unlabeled data). 
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