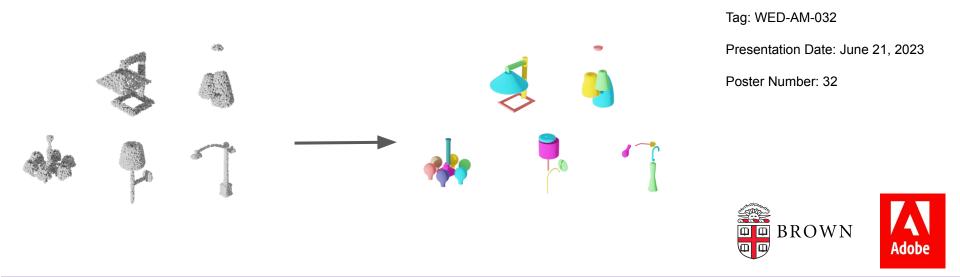


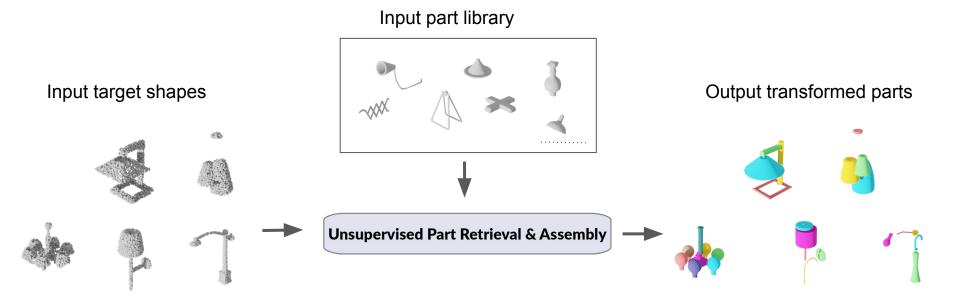
Unsupervised 3D Shape Reconstruction by Part Retrieval and Assembly

Xianghao Xu, Paul Guerrero, Matthew Fisher, Siddhartha Chaudhuri, Daniel Ritchie

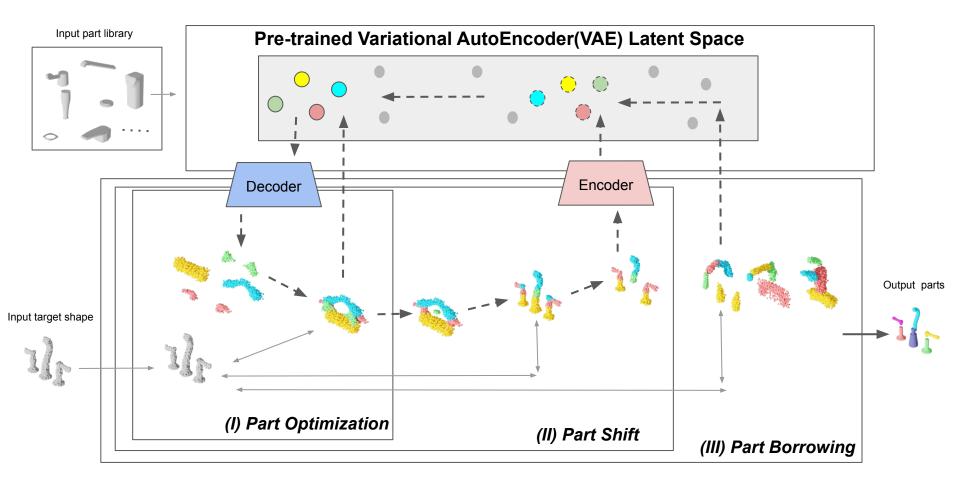


Preview

Goal: Representing 3D shapes with parts from a given library of 3D parts

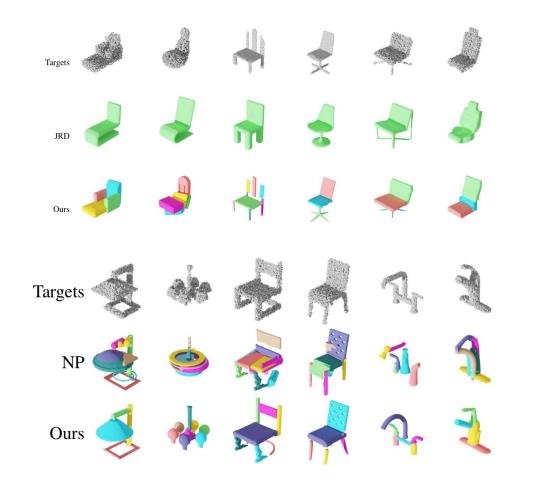


Iterative retrieval and assembly framework



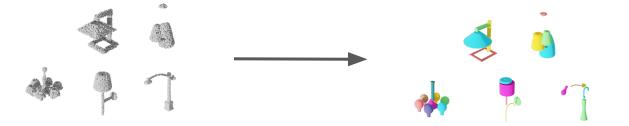
Qualitative results

Our method achieves better reconstruction results

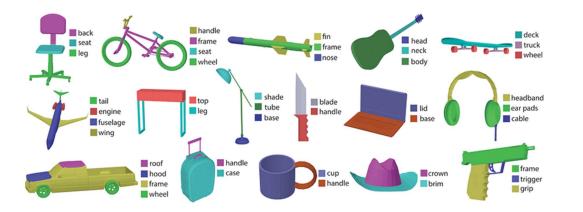


Long version

Motivation: Representing 3D shapes with a set of smaller 3D elements



Aid perception of underlying structure



https://people.cs.umass.edu/~kalo/papers/shapepfcn/

Aid 3D fabrication process

Prior Work : Representing 3D shapes with cuboids

Using of simple parametric primitives leads to coarse approximations

Learning Shape Abstractions by Assembling Volumetric Primitives

Shubham Tulsiani¹, Hao Su², Leonidas J. Guibas², Alexei A. Efros¹, Jitendra Malik¹ ¹University of California, Berkeley ¹{shubhtuls, efros, malik}@eecs.berkeley.edu, ²{haosu, guibas}@cs.stanford.edu

Learning Adaptive Hierarchical Cuboid Abstractions of 3D Shape Collections

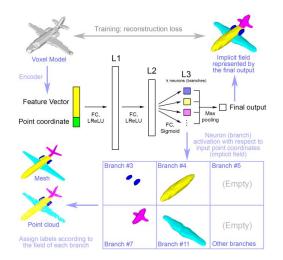
CHUN-YU SUN', Tsinghua University and Microsoft Research Asia QIAN-FANG ZOU', University of Science and Technology of China and Microsoft Research Asia XIN TONG and YANG LIU[†], Microsoft Research Asia

Prior Work : Representing 3D shapes with learned primitives

Offers too little control over the decomposition

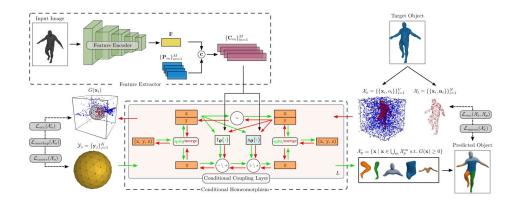
BAE-NET: Branched Autoencoder for Shape Co-Segmentation

Zhiqin Chen¹, Kangxue Yin¹, Matthew Fisher², Siddhartha Chaudhuri^{2,3}, and Hao Zhang¹ ¹Simon Fraser University ²Adobe Research ³IIT Bombay

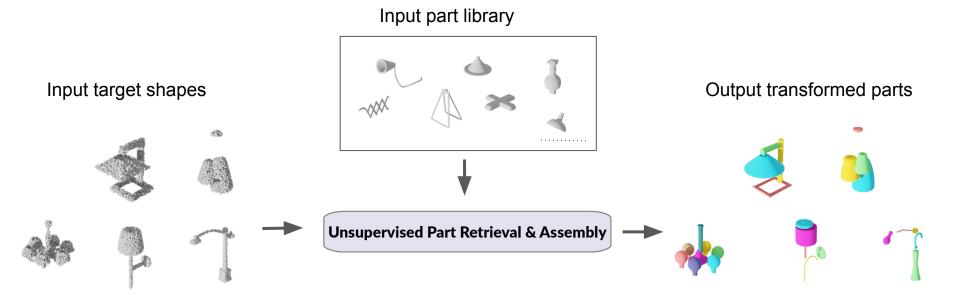


Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks

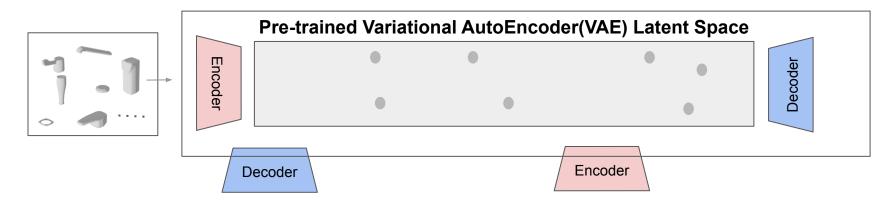
Despoina Paschalidou^{1,5,6} Angelos Katharopoulos^{3,4} Andreas Geiger^{1,2,5} Sanja Fidler^{6,7,8} ¹Max Planck Institute for Intelligent Systems Tübingen ²University of Tübingen ³Idiap Research Institute, Switzerland ⁴École Polytechique Fédérale de Lausanne (EPFL) ⁵Max Planck ETH Center for Learning Systems ⁶NVIDIA ⁷University of Toronto ⁸Vector Institute {firstname.lastname}etue.mor.de angelos.katharopoulos@idiap.ch =fidler@nvidia.com



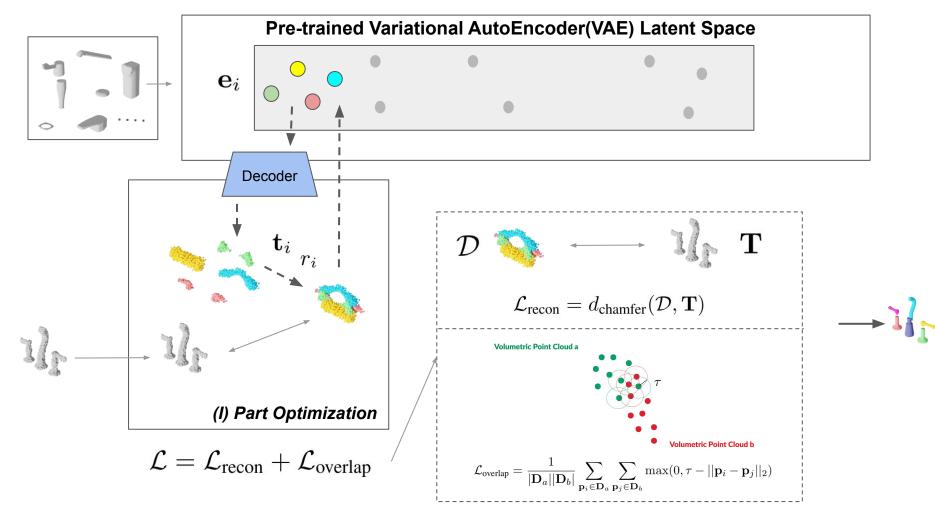
Goal: Representing 3D shapes with a library of 3D parts



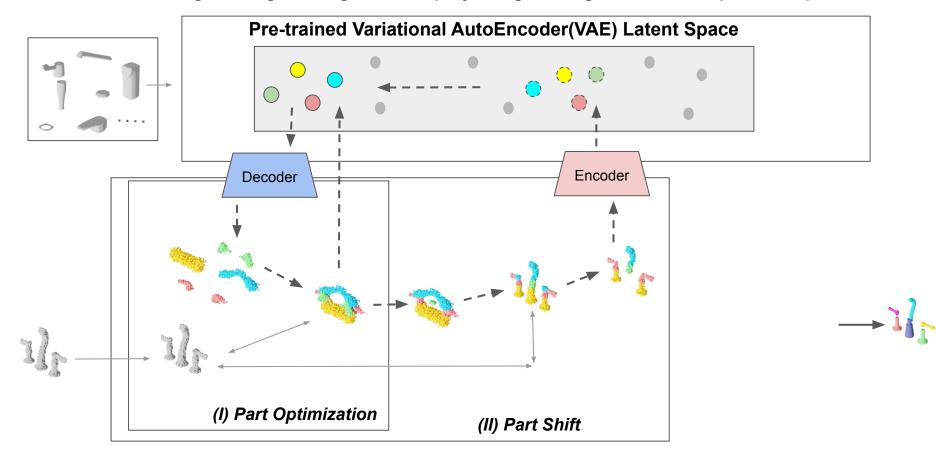
A pre-trained latent space to turn the discrete into continuous



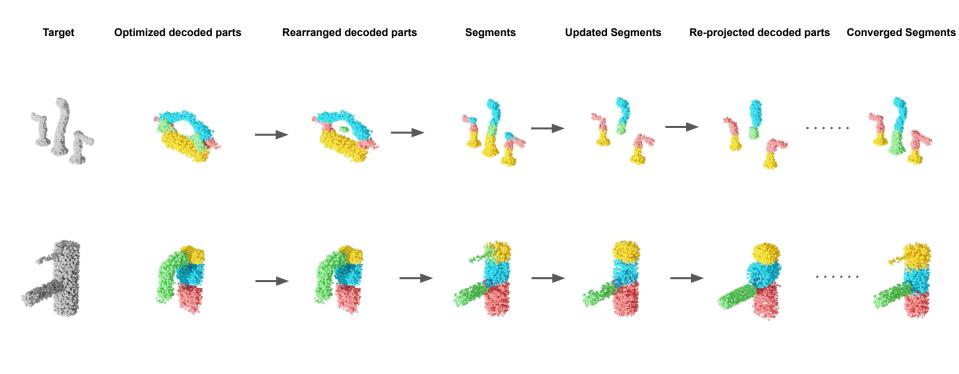
Phase I Part Optimization: Direct optimizing part codes and part poses



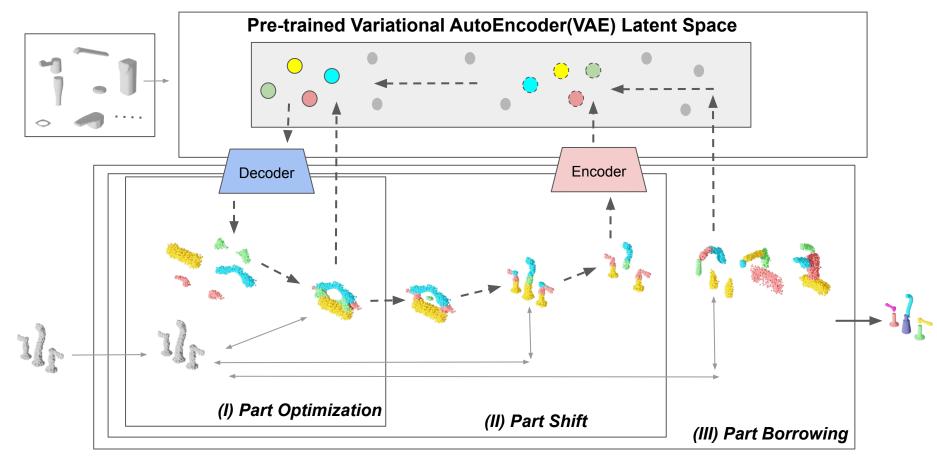
Phase II Part Shift: segmenting the target and re-projecting the segments to escape local optima



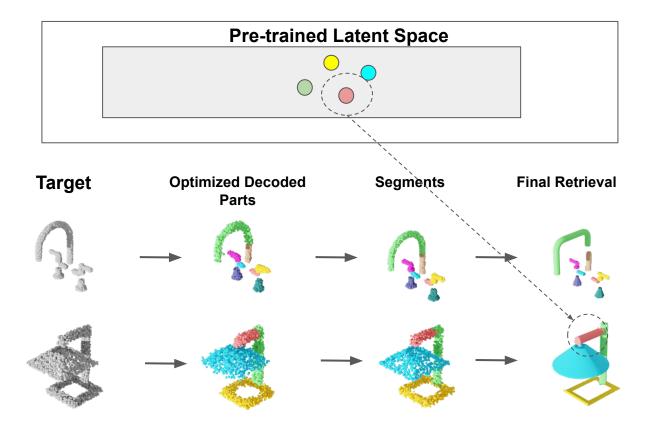
Part Shift: A sequence of segment refining operations



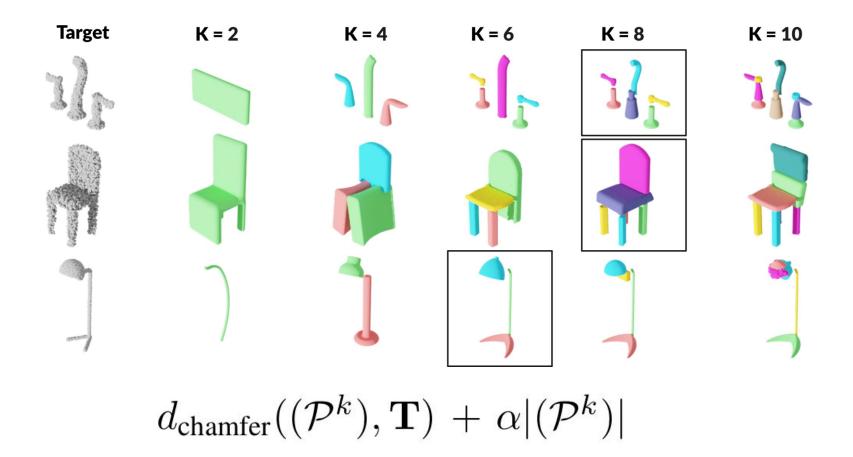
Part Borrowing: borrowing good part decompositions from other shapes



Retrieving parts based on segmentation



Choosing number of parts



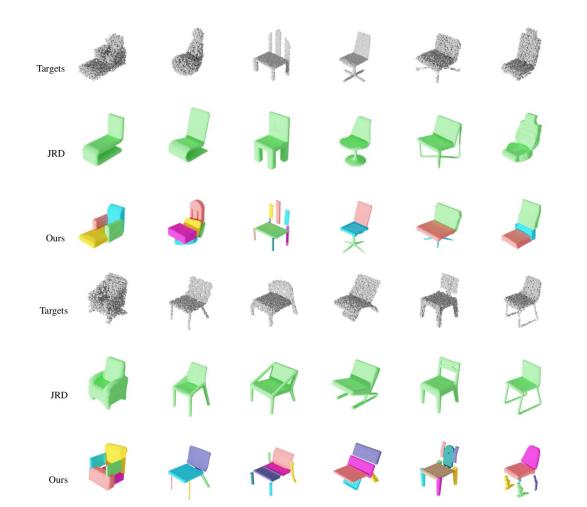
Let's see some results

Experiment 1: Comparison to JRD

Joint Learning of 3D Shape Retrieval and Deformation

Mikaela Angelina Uy¹ Vladimir G. Kim² Minhyuk Sung³ Noam Aigerman² Siddhartha Chaudhuri^{2,4} Leonidas Guibas¹ ¹Stanford University ²Adobe Research ³KAIST ⁴IIT Bombay

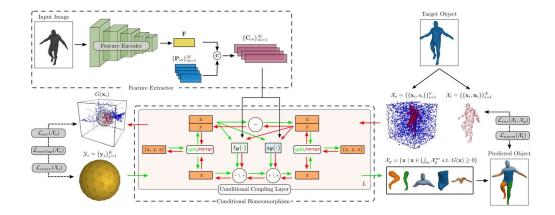
Our method handles the structure difference between source shapes and target shapes



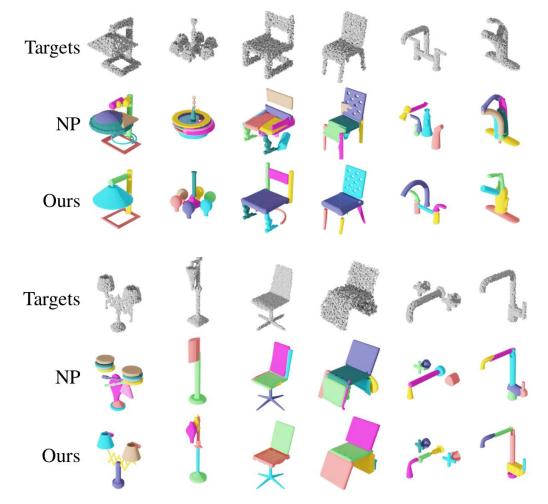
Experiment 2: Comparison to Neural Parts(NP)

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks

Despoina Paschalidou^{1,5,6} Angelos Katharopoulos^{3,4} Andreas Geiger^{1,2,5} Sanja Fidler^{6,7,8} ¹Max Planck Institute for Intelligent Systems Tübingen ²University of Tübingen ³Idiap Research Institute, Switzerland ⁴École Polytechique Fédérale de Lausanne (EPFL) ⁵Max Planck ETH Center for Learning Systems ⁶NVIDIA ⁷University of Toronto ⁸Vector Institute {firstname.lastname}@tue.mpg.de angelos.katharopoulos@idiap.ch sfidler@nvidia.com



Our part aware method generates cleaner and better results

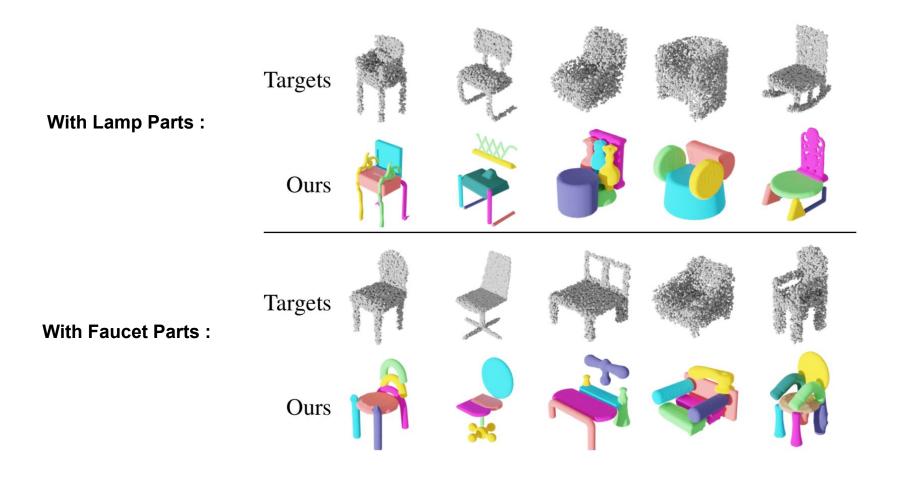


Our method outperforms both baselines in all metrics across all categories

SCD: Surface Points Chamfer Distance **VCD**: Volumetric Points Chamfer Distance

Category	Method	Train (SCD) \downarrow	Train (VCD) \downarrow	Test (SCD) \downarrow	Test (VCD) \downarrow
Lamp	NP	0.349	0.204	0.390	0.195
	Ours	0.307	0.163	0.303	0.163
Faucet	NP	0.326	0.171	0.370	0.174
	Ours	0.256	0.135	0.288	0.134
Chair	JRD	0.746	0.448	0.669	0.397
	NP	0.495	0.233	0.547	0.240
	Ours	0.470	0.219	0.539	0.234
Average	JRD	0.746	0.448	0.669	0.397
	NP	0.390	0.203	0.436	0.203
	Ours	0.344	0.172	0.377	0.177

Cross-category reconstructions



Conclusion

Contribution:

- An unsupervised algorithm which retrieves and places 3D parts from a given part library to reconstruct 3D target shapes.
 - Turns combinatorial problem into a semi-continuous optimization problem
 - Introduces a multi-phase framework to avoid the worst of local optimas

Future Work:

- Introducing physical priors into the optimization to make reconstructions more physically plausible
- Supporting incomplete point clouds as input.

Thank you for your time !