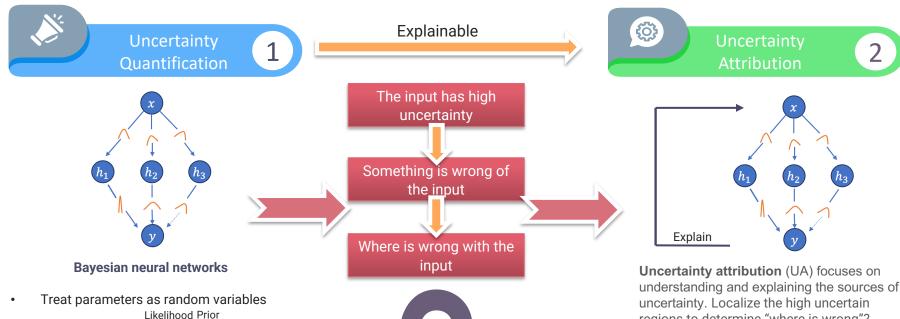
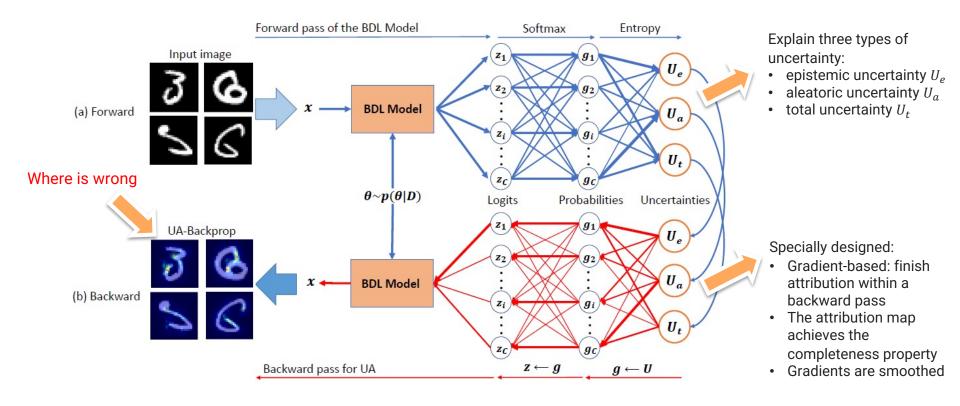
Gradient-based Uncertainty Attribution For Explainable Bayesian Deep Learning


Authors: Hanjing Wang, Dhiraj Joshi, Shiqiang Wang, Qiang Ji Session and Poster ID: WED-AM-364

Introduction to Uncertainty Attribution (UA)

Posterior
$$p(\theta|D) = \frac{\text{Likelihood Prio}}{p(D|\theta)p(\theta)}$$
 evidence

Well-founded framework for uncertainty quantification



regions to determine "where is wrong"?

Challenges

- Not well-explored area
- Previous methods focus on attribution of the classification score of the deterministic model

Overview of the Method: UA-Backprop

UA-Backprop Details

Forward Pass

$$\theta^{s} \sim p(\theta|D) \Rightarrow \begin{cases} \{z^{s}\}_{s=1}^{S} \\ \{g^{s}\}_{s=1}^{S} \end{cases}$$

$$UQ$$

$$U_{t} = \sum_{i=1}^{C} -\left(\frac{1}{S} \sum_{s=1}^{S} g_{i}^{s}\right) \log\left(\frac{1}{S} \sum_{s=1}^{S} g_{i}^{s}\right)$$

$$U_{a} = \sum_{i=1}^{C} \frac{1}{S} \sum_{s=1}^{S} -g_{i}^{s} \log g_{i}^{s}$$

$$U_{e} = U_{t} - U_{a}$$

Uncertainty → Softmax Probability

 $U \rightarrow g$

Find the contribution of each g_i to U

$$U_{t,g_i} = -\left(\frac{1}{S} \sum_{s=1}^{S} g_i^s\right) \log\left(\frac{1}{S} \sum_{s=1}^{S} g_i^s\right)$$

$$U_{a,g_i} = \frac{1}{S} \sum_{s=1}^{S} -g_i^s \log g_i^s$$

$$U_{e,g_i} = U_{t,g_i} - U_{a,g_i}$$

Softmax Probabilties → Logits

 $g \rightarrow z$

Find the contribution of each z_i to U by exploring all possible path $g_i \rightarrow z_i$.

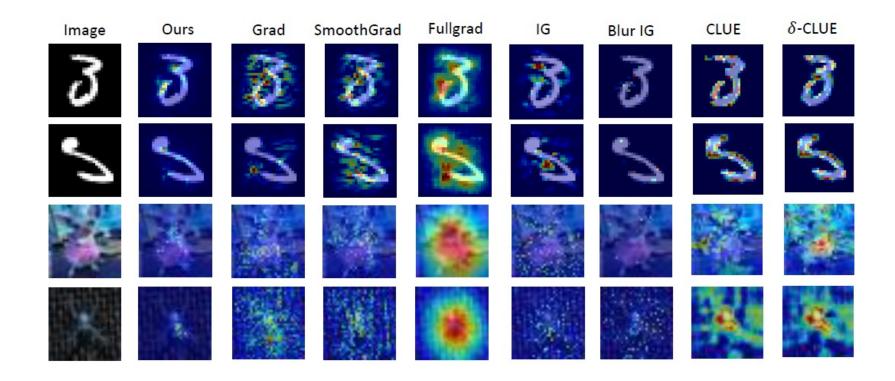
$$U_{z_i^s} = \sum_{j=1}^{C} c_{g_j^s \to z_i^s} U_{g_j}$$

$$c_{g_j^s \to z_i^s} = \phi_i \left(\left\{ \frac{\partial g_j^s}{\partial z_k^s} \right\}_{k=1}^{C}, \tau_1 \right)$$

$$= \frac{\exp\left(\frac{\partial g_j^s}{\partial z_i^s} / (g_j^s \cdot \tau_1) \right)}{\sum_{k=1}^{C} \exp\left(\frac{\partial g_j^s}{\partial z_k^s} / (g_j^s \cdot \tau_1) \right)}$$

Logits to Input

 $Z \rightarrow \chi$


Find the contribution of each x to U by exploring the path $U \rightarrow g \rightarrow z \rightarrow x$.

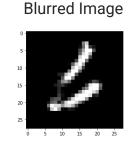
$$M(x) = \frac{1}{S} \sum_{s=1}^{S} \sum_{i=1}^{C} U_{z_i}^s M_i^s(x)$$

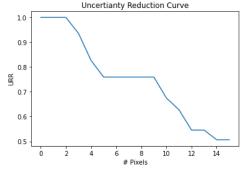
$$M_i^s(x) = \psi \left(\left| rac{\partial z_i^s}{\partial x} \odot x \right| + \right.$$

$$\sum_{l}\left|rac{\partial z_{i}^{s}}{\partial b_{l}^{s}}\odot b_{l}^{s}
ight|, au_{2}
ight)$$

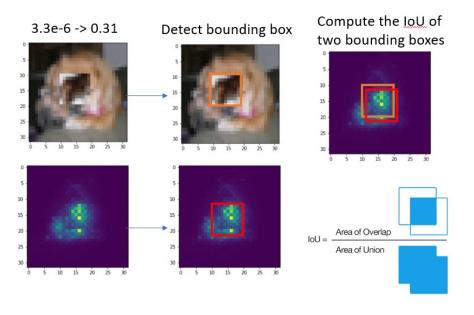
Qualitative Evaluation: Where Is Wrong?

Quantitative Evaluation: Blurring Test

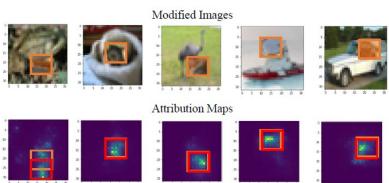

Iteratively blur up to 2%/5% of the image pixels, following the order of high UA scores (blur the problematic regions)


Uncertainty Map

Image



	Maximum Uncertainty Reduction Rate (MURR)↑									
Method	MNIST		C10		C100		SVHN		Avg. Performance	
	%2	%5	%2	%5	%2	%5	%2	%5	%2 + %5	
Ours	0.648	0.850	0.629	0.848	0.195	0.302	0.625	0.758	0.607	
Grad	0.506	0.741	0.578	0.798	0.165	0.276	0.555	0.705	0.541	
SmoothGrad	0.601	0.779	0.566	0.800	0.154	0.255	0.575	0.735	0.558	
FullGrad	0.691	0.869	0.555	0.772	0.156	0.274	0.565	0.709	0.574	
IG	0.434	0.725	0.632	0.827	0.159	0.270	0.649	0.773	0.559	
Blur IG	0.305	0.515	0.693	0.971	0.184	0.318	0.762	0.896	0.581	
CLUE	0.614	0.874	0.291	0.628	0.074	0.148	0.171	0.352	0.394	
δ -CLUE	0.625	0.901	0.415	0.577	0.073	0.150	0.146	0.295	0.398	


	Area under the Uncertainty Reduction Curve (AUC-URR) ↓									
Method	MNIST		C10		C100		SVHN		Avg. Performance	
	%2	%5	%2	%5	%2	%5	%2	%5	%2 + %5	
Ours	0.667	0.445	0.664	0.484	0.901	0.821	0.526	0.407	0.614	
Grad	0.709	0.534	0.701	0.538	0.912	0.843	0.613	0.448	0.662	
SmoothGrad	0.675	0.461	0.730	0.551	0.919	0.860	0.584	0.424	0.651	
FullGrad	0.603	0.429	0.696	0.543	0.924	0.859	0.596	0.455	0.638	
Blur IG	0.816	0.667	0.638	0.466	0.914	0.851	0.541	0.402	0.662	
IG	0.752	0.529	0.731	0.444	0.905	0.824	0.523	0.298	0.626	
CLUE	0.709	0.397	0.861	0.624	0.966	0.926	0.919	0.815	0.777	
δ -CLUE	0.665	0.395	0.793	0.710	0.968	0.924	0.932	0.848	0.779	

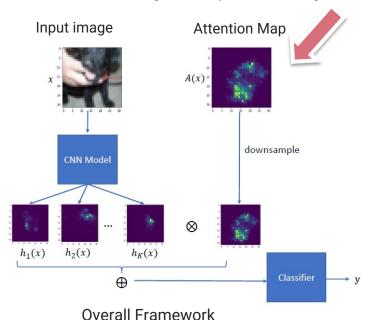
Quantitative Evaluation: Anomaly Detection

The process of anomaly detection

Visualizations

Quantitative Results

Method	C10		C100		SV	HN	Avg. Performance	
Method	IoU	ADA	IoU	ADA	IoU	ADA	IoU	ADA
Ours	0.353	0.285	0.363	0.375	0.217	0.124	0.311	0.261
Grad	0.141	0.090	0.167	0.135	0.198	0.096	0.169	0.107
SmoothGrad	0.321	0.260	0.316	0.245	0.212	0.114	0.283	0.206
FullGrad	0.341	0.285	0.320	0.295	0.206	0.114	0.289	0.231
IG	0.171	0.090	0.170	0.105	0.139	0.052	0.160	0.082
Blur IG	0.182	0.125	0.318	0.290	0.150	0.078	0.217	0.164
CLUE	0.253	0.210	0.208	0.180	0.115	0.042	0.192	0.114
δ -CLUE	0.248	0.240	0.229	0.220	0.105	0.044	0.194	0.168


Uncertainty Attribution Maps As Attention

Given the uncertainty attribution map M(x)

$$A(x) = (1 - M(x)) \odot M(x)$$

A(x) strengthens more informative regions by

- Ignore the unimportant background information
- · Ignore the problematic regions

Attention Map

Examples of Attention Maps

Acc (%) ↑ and NLL ↓ for uncertainty mitigation evaluation

Method	MNIST		C10		C100		SVHN		Avg. Performance	
	ACC	NLL	ACC	NLL	ACC	NLL	ACC	NLL	ACC	NLL
Ours	91.95	0.287	36.48	1.768	12.12	4.326	65.13	1.489	51.42	1.968
Grad	91.35	0.302	31.60	1.938	12.13	4.422	63.74	1.578	49.71	2.060
SmoothGrad	90.68	0.324	32.05	1.942	12.57	4.508	62.35	1.628	49.41	2.100
FullGrad	91.39	0.300	32.85	1.920	12.06	4.574	62.38	1.568	49.67	2.091
IG	91.98	0.350	34.43	1.829	11.89	4.265	64.31	1.511	50.65	1.989
Blur IG	91.57	0.288	32.20	1.935	12.34	4.630	65.04	1.526	50.29	2.095
CLUE	91.64	0.348	33.34	1.846	12.15	4.299	60.01	1.572	49.29	2.016
δ -CLUE	91.76	0.350	35.02	1.809	12.22	4.362	62.71	1.612	50.43	2.033
No attention	90.78	0.358	31.62	1.921	12.02	4.536	60.64	1.569	48.77	2.096

Thank You