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Motivation

Radiology reports
• Written by radiologists in clinical practice
• Interpratation of medical images
• Consisting of several sentences

=> Goal: Automation of report writing

Problems of current methods
• No explicit focus on salient regions
• Factual inconsistencies and incompleteness
• Limited explainability
• No human interaction in generation process
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Our Approach:
Region-Guided Radiology Report Generation (RGRG)

Our Approach: RGRG
• Explicit detection of anatomical regions
• Explicit description of each (salient) region
• Option to manually specify regions

Benefits
• Factual completeness and consistency
• High degree of explainability
• Interactive generation process with radiologist
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RGRG: Architecture
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(1) Encoder with Object Detector
• ResNet50 + Faster R-CNN detecting 29 anatomical regions
à Top-1 object proposal for each class
à Extract region features using RoI pooling
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(2) Abnormality Classification
• Binary classifier on region features: Normal (healthy) / Abnormal (pathology present)
à Encourages meaningfull region features
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(3) Region Selection
• Binary classifier on region features: Select / Ignore region for report generation
à Pre-selection to only generate sentences for relevant (salient) regions
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(4) Decoder for Sentence Generation
• Generated sentences independently per region using region features
• 355M-parameter GPT-2 Medium pre-trained on PubMed abstracts
à Conditioning using pseudo self-attention: extend key/value sequences in attention
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RGRG: Inference

Object
detector

Encoder

Region selection

Self Attention

X Y

Token embeddings

Feed forward

x 24
Linear & Softmax

Decoder

Binary 
classifier

29x
region
visual 

features

4x
selected region
visual features

Binary 
classifier

Abnormality classification

training & testing

only training

1. Full radiology report generation
• Concatenation of generated sentences

2. Anatomy-based sentence generation (interactive)
• Region selection module exclusively chooses radiologist’s selection

3. Selection-based sentence generation (interactive)
• Manually drawn bounding box à RoI pooling à Decoder
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RGRG: Training
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• ℒ!"# : Faster R-CNN loss
• ℒ$%&%'( : Binary cross-entropy loss
• ℒ)"*!+,)& : Binary cross-entropy loss
• ℒ&)*-.)-% : Cross-entropy loss

ℒ = 𝜆!"#ℒ!"# + 𝜆$%&%'(ℒ$%&%'( + 𝜆)"*!+,)&ℒ)"*!+,)& + 𝜆&)*-.)-%ℒ&)*-.)-%
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Chest ImaGenome Dataset [1]

[1] Wu, J., Agu, N., et al. Chest ImaGenome Dataset for Clinical Reasoning. In PhysioNet, 2021.
[2] A. E. W. Johnson, et al. Mimic-cxr database (version 2.0.0). PhysioNet, 2019.

• Automatically constructed from the MIMIC-CXR [2] dataset
• 242,072 frontal chest X-ray images
• Scene graph data structure (inspired by Visual Genome)
• Each image has:

• Bounding box coordinates for 29 anatomical regions
• Reference sentences describing regions (if exist in reference report)



Results: Full Report Generation
Natural language generation (NLG) metrics

NLG metrics: count matching n-grams (“word overlap”)
à Domain-agnostic

𝜟+10.5% 𝜟+6.3%

è Competitive/outperforms methods on NLG metrics
è New SOTA on METEOR
è Lower ROUGE-L score due to low precision of region selection (very subjective) 11

BLEU score boosted by lowercasing
Best without lowercasing



Results: Full Report Generation

Clinical efficacy (CE) metrics

CE metrics: compare generated and reference report w.r.t. clinical observations
à Evaluate diagnostic accuracy (and factual completeness/consistency)

𝜟+22,4% 𝜟+16.4%

è Competitive with methods directly optimized on CE metrics 
è Substantially outperforms all other methods on CE metrics
è Generates factually complete and consistent reports
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RL-optimized on CE metrics



Results: Anatomy-based Sentence Generation
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Results: Selection-based Sentence Generation

14

è Location-sensitivity
Variation of bounding boxes to simulate 
manually drawn boxes
à Evaluate sensitivity to changes

è Shape robustness



Results: Selection-based Sentence Generation
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Conclusion
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• Simple yet effective approach to radiology report generation

• Focus on salient anatomical regions

• Competitive with/outperforming SOTA methods in full report generation

• Generates region-specific descriptions à High degree of explainability

• Interactive intervention in generation process possible


