

Interactive and Explainable Region-guided Radiology Report Generation

Tim Tanida^{1,*}, Philip Müller^{1,*}, Georgios Kaissis^{1,2}, Daniel Rueckert^{1,3}

¹Technical University of Munich, ²Helmholtz Zentrum Munich, ³Imperial College London

Paper Tag: TUE-PM-316

Motivation

Radiology reports

- Written by radiologists in clinical practice
- Interpratation of medical images
- Consisting of several sentences

=> Goal: Automation of report writing

Problems of current methods

- No explicit focus on salient regions
- Factual inconsistencies and incompleteness
- Limited explainability
- No human interaction in generation process

Our Approach: <u>Region-Guided Radiology Report Generation (RGRG)</u>

Our Approach: RGRG

- Explicit detection of anatomical regions
- Explicit description of each (salient) region
- Option to manually specify regions

Benefits

- Factual completeness and consistency
- High degree of explainability
- Interactive generation process with radiologist

(1) Encoder with Object Detector

- ResNet50 + Faster R-CNN detecting 29 anatomical regions
- \rightarrow Top-1 object proposal for each class
- \rightarrow Extract region features using Rol pooling

(2) Abnormality Classification

- Binary classifier on region features: Normal (healthy) / Abnormal (pathology present)
- \rightarrow Encourages meaningfull region features

(3) Region Selection

- Binary classifier on region features: Select / Ignore region for report generation
- \rightarrow Pre-selection to only generate sentences for relevant (salient) regions

(4) Decoder for Sentence Generation

- Generated sentences independently per region using region features
- 355M-parameter GPT-2 Medium pre-trained on PubMed abstracts
- → Conditioning using pseudo self-attention: extend key/value sequences in attention

RGRG: Inference

- 1. Full radiology report generation
 - Concatenation of generated sentences
- 2. Anatomy-based sentence generation (interactive)
 - Region selection module exclusively chooses radiologist's selection
- 3. Selection-based sentence generation (interactive)
 - Manually drawn bounding box \rightarrow Rol pooling \rightarrow Decoder

RGRG: Training

 $\mathcal{L} = \lambda_{obj} \mathcal{L}_{obj} + \lambda_{select} \mathcal{L}_{select} + \lambda_{abnormal} \mathcal{L}_{abnormal} + \lambda_{language} \mathcal{L}_{language}$

- \mathcal{L}_{obj} : Faster R-CNN loss
- \mathcal{L}_{select} : Binary cross-entropy loss
- $\mathcal{L}_{abnormal}$: Binary cross-entropy loss
- $\mathcal{L}_{language}$: Cross-entropy loss

Chest ImaGenome Dataset [1]

- Automatically constructed from the MIMIC-CXR [2] dataset
- 242,072 frontal chest X-ray images
- Scene graph data structure (inspired by Visual Genome)
- Each image has:
 - Bounding box coordinates for 29 anatomical regions
 - Reference sentences describing regions (if exist in reference report)

Results: Full Report Generation

Dataset	Method	Year	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr
MIMIC-CXR	R2Gen [7]	2020	0.353	0.218	0.145	0.103	0.142	0.277	0.406^{\dagger}
	CMN [6]	2021	0.353	0.218	0.148	0.106	0.142	0.278	-
	PPKED [24]	2021	0.360	0.224	0.149	0.106	0.149	0.284	0.237
	\mathcal{M}^2 TR. PROGRESSIVE [30]	2021	0.378	0.232	0.154	0.107	0.145	0.272	-
	Contrastive Attention [25]	2021	0.350	0.219	0.152	0.109	0.151	0.283	-
	AlignTransformer [53]	2021	0.378	0.235	0.156	0.112	0.158	0.283	-
	\mathcal{M}^2 Trans w/ NLL [28]	2021	-	-	-	0.105	-	-	0.445
	\mathcal{M}^2 Trans w/ NLL+BS+f _{C_E} [28]	2021	-	-	-	0.111	-	-	0.492
	\mathcal{M}^2 Trans w/ NLL+BS+f _{C_{EN}} [28]	2021	-	-	-	0.114	-	-	0.509
	ITA [47]	2022	0.395	0.253	0.170	0.121	0.147	0.284	-
	CvT-212DistilGPT2 [29]	2022	0.392	0.245	0.169	0.124	0.153	0.285	0.361
	RGRG	Ours	0.373	0.249	0.175	0.126	0.168	0.264	0.495
									

NLG metrics: count matching n-grams ("word overlap")

Δ+10.5% Δ+6.3%

Natural language generation (NLG) metrics

- \rightarrow Domain-agnostic
- → Competitive/outperforms methods on NLG metrics
- ➔ New SOTA on METEOR
- → Lower ROUGE-L score due to low precision of region selection (very subjective)
- BLEU score boosted by lowercasing
- Best without lowercasing

Results: Full Report Generation

									l
Dataset	Method	RL	Year	P _{mic-5}	R _{mic-5}	F _{1, mic-5}	Pex-14	Rex-14	F _{1, ex-14}
	R2Gen [7]	X	2020	0.412	0.298	0.346	0.331	0.224	0.228
	\mathcal{M}^2 Trans w/ NLL [28]	X	2021	<u>0.489</u>	$\underline{0.411}$	<u>0.447</u>	-	-	-
	\mathcal{M}^2 Trans w/ NLL+BS+f _{CE} [28]	1	2021	0.463	0.732	0.567	-	-	-
	M^2 Trans w/ NLL+BS+f _{C_{EN}} [28]	\checkmark	2021	0.503	0.651	0.567	-	-	-
MIMIC-CXR	CMN [6]	X	2021	-	-	-	0.334	0.275	0.278
	Contrastive Attention [25]	X	2021	-	-	-	0.352	0.298	0.303
	\mathcal{M}^2 TR. PROGRESSIVE [30]	X	2021	-	-	-	0.240	0.428	0.308
	CvT-212DistilGPT2 [29]	X	2022	-	-	-	0.359	0.412	0.384
	RGRG	X	Ours	<u>0.491</u>	0.617	0.547	0.461	0.475	0.447

Clinical efficacy (CE) metrics

CE metrics: compare generated and reference report w.r.t. clinical observations

→ Evaluate diagnostic accuracy (and factual completeness/consistency)

- → Competitive with methods directly optimized on CE metrics
- → Substantially outperforms all other methods on CE metrics
- → Generates factually complete and consistent reports

∆+22,4%

⊿+16.4%

RL-optimized on CE metrics

Results: Anatomy-based Sentence Generation

Results: Selection-based Sentence Generation

Additive variations (1- σ interval) Multiplicative variations (1- σ interval)

Variation of bounding boxes to simulate manually drawn boxes → Evaluate sensitivity to changes

➔ Location-sensitivity

➔ Shape robustness

Results: Selection-based Sentence Generation

pneumonia ground-truth position	ground-truth aspect ratio	ground-truth scale			
Ground-truth:	Ground-truth:	Ground-truth:			
Generated: Right lower lobe pneumonia.	Generated: Right lower lobe pneumonia.	Generated: Right lower lobe pneumonia.			
Reference: Interval worsening of right	Reference: Interval worsening of right lower	Reference: Interval worsening of right lower			
lower lobe pneumonia.	lobe pneumonia.	lobe pneumonia.			
Position 1: Generated: The right upper lobe opacity has improved since	Aspect ratio 1: Generated: Right lower lobe pneumonia.	Scale 1: Generated: Right lower lobe pneumonia.			
Position 2:	Aspect ratio 2:	Scale 2:			
Generated: Upper lungs are clear.	Generated: Right <u>upper</u> lobe pneumonia.	Generated: Right <u>upper</u> lobe pneumonia.			

Conclusion

- Simple yet effective approach to radiology report generation
- Focus on salient anatomical regions
- Competitive with/outperforming SOTA methods in full report generation
- Generates region-specific descriptions \rightarrow High degree of explainability
- Interactive intervention in generation process possible