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Adapt vision-language 
models to new dataset by 
learning class names

– Removes class name 
ambiguities

– Increases robustness 
to prompt context  

– Language agnostic: 
adapt to model’s 
observed language

– Directly applicable to 
both classification and 
object detection tasks

Text encoder

Pre-trained 
multimodal model

[prompt context] + [class name]

Standard training loss
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Vision-language classification models

[prompt context] + [class name]

e.g. ‘A photo of a cat’
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encoder

‘Cat’

eI

t1.eI t2.eI t3.eI t4.eI t5.eI 

Radford et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.



Vision-language detection models

[prompt context] + [class name]

e.g. ‘A photo of a cat’
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Minderer et al. "Simple open-vocabulary object detection with vision transformers." ECCV 2022



Fine-tuning
• Adapting vision-language models to 

new data: challenging!
– Small dataset overfitting

– Losing generalisation ability

• Linear probing
– Train a standard linear classification 

layer using frozen image encoder

☑ Data efficient

☑ improves over zero-shot performance

☑ no hand-crafted text components

☒ Loses open-set and zero-shot 
properties

Image source: Radford et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.



Sensitivity to prompt input
• Model performance is sensitive to 

text input

• Existing methods rely on handcrafted
class names. Potentially:
– Ambiguous

– Too technical

– Unrepresentative of image content 

Image source: Radford et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.



Prompt context learning

• Learn prompt context word 
embeddings (frozen vision-language)

Data efficient

☑ Improves over zero-shot performance

☑ Address prompt sensitivity limitations

☑ Maintain open-set properties

☒ Relies on handcrafted class names

☒ Difficult continual adaptation

☒ Weak object detection performance

Zhou et al. "Learning to prompt for vision-language models." International Journal of Computer Vision (2022)



Proposed solution
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Proposed solution
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Experiments: classification with CLIP

• Outperforms SOTA in open-

vocabulary and sequential 

training settings

• Learning all class names 

strongly reduces 

dependency on prompt 

context

Open-vocabulary setting: 

learning half of the dataset 

class names

Sequential training setting: 

learning two sets of class 

names sequentially



Experiments: Object detection with OWL-vit

• Learning class names 
(10% of data) – match 
performance of fully fine-
tuned model

• Significant performance 
improvement for rare 
classes

• Significant gains 
compared to prompt 
context learning



Interpretability
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Interpretability

Original name: 

Arctic

Boot, ski boot

Original name: 

Tricycle

Cart, rickshaw

Original name: 

Miscellaneous

wheel, waterwheel



Interpretability

Identifying model biases: American English over British English

Original name: 

Clothes hamper

Laundry basket

Original name:

Wall socket

Power outlet

Original name:

Trousers

Clothes, Pants

Original name:

Postbox

Mailbox



Interpretability

Potential to 

identify 

mislabelled data 

and failures 

modes of our 

method



Conclusion

• Novel data efficient adaptation for vision-language models
– Removes dependency on hand-crafted class names 

– Learn optimal class word embeddings from visual content

• Out of the box usage on classification, detection models

• Complementary to prompt context learning methods

• High interpretability
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