

Learning to Name Classes for Vision and Language Models

Sarah Parisot, Yongxin Yang, Steven McDonagh

Huawei Noah's Ark Lab

[prompt context] + [class name]

Adapt vision-language models to new dataset by learning class names

[prompt context] + [Placeholder]

Adapt vision-language models to new dataset by learning class names

- Removes class name ambiguities
- Increases robustness to prompt context
- Language agnostic: adapt to model's observed language
- Directly applicable to both classification and object detection tasks

Vision-language classification models

Radford et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.

Vision-language detection models

Minderer et al. "Simple open-vocabulary object detection with vision transformers." ECCV 2022

Fine-tuning

- Adapting vision-language models to new data: challenging!
 - Small dataset overfitting
 - Losing generalisation ability
- Linear probing
 - Train a standard linear classification layer using frozen image encoder
 -] Data efficient

improves over zero-shot performance

no hand-crafted text components

Loses open-set and zero-shot properties

Image source: Radford et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.

Sensitivity to prompt input

 Model performance is sensitive to text input

Ambiguous class names

Technical class names

Both named 'bow'

Both named 'bat'

Class name: 2007 Cadillac Escalade EXT Crew Cab

Class name: A340-200

- Existing methods rely on *handcrafted* class names. Potentially:
 - Ambiguous
 - Too technical
 - Unrepresentative of image content

Image source: Radford et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.

Prompt context learning

 Learn prompt context word embeddings (frozen vision-language)

Data efficient

- Improves over zero-shot performance
 - Address prompt sensitivity limitations
- ✓ Maintain open-set properties

Relies on handcrafted class names Difficult continual adaptation Weak object detection performance

Figure 2: Overview of context optimization (CoOp).

Zhou et al. "Learning to prompt for vision-language models." International Journal of Computer Vision (2022)

Proposed solution

Proposed solution

Proposed solution

Experiments: classification with CLIP

- Outperforms SOTA in openvocabulary and sequential training settings
- Learning all class names strongly reduces dependency on prompt context

Method - * with engineered context CLIP* CoOp Ours Ours*

Open-vocabulary setting: learning half of the dataset class names

Sequential training setting: learning two sets of class names sequentially

Experiments: Object detection with OWL-vit

- Learning class names (10% of data) – match performance of fully finetuned model
- Significant performance improvement for rare classes
- Significant gains compared to prompt context learning

Miscellaneous

wheel, waterwheel

Identifying model biases: American English over British English

Potential to identify mislabelled data and failures modes of our method

class examples

Conclusion

- Novel data efficient adaptation for vision-language models
 - Removes dependency on hand-crafted class names
 - Learn optimal class word embeddings from visual content

- Out of the box usage on classification, detection models
- Complementary to prompt context learning methods
- High interpretability

Learning to Name classes for Vision and Language Models

Sarah Parisot, Yongxin Yang, Steven McDonagh

Huawei Noah's Ark Lab

