

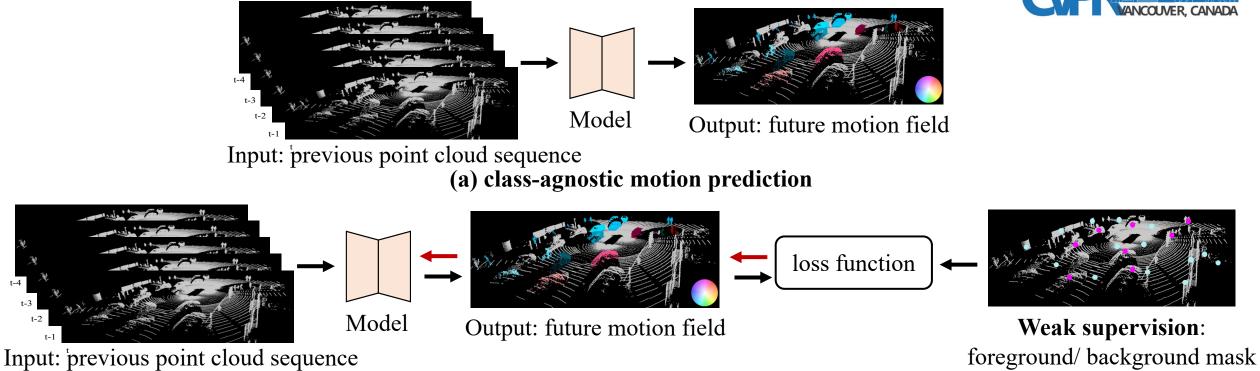
Weakly Supervised Class-agnostic Motion Prediction for Autonomous Driving

Ruibo Li^{1,2}, Hanyu Shi², Ziang Fu³, Zhe Wang³, Guosheng Lin^{1,2}

¹S-Lab for Advanced Intelligence, Nanyang Technological University ²School of Computer Science and Engineering, Nanyang Technological University ³SenseTime Research

Paper tag : THU-AM-107

Overview

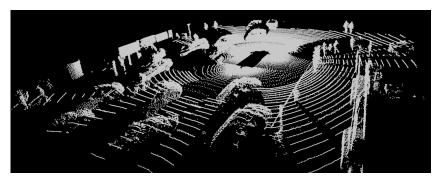


(b) Our: weakly supervised class-agnostic motion prediction

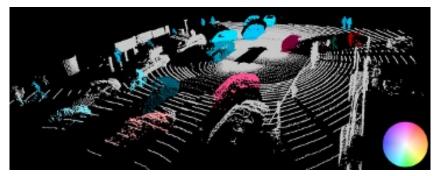
- A novel weakly supervised motion prediction paradigm with fully or partially annotated foreground/background (FB/BG) masks as supervision
- A two-stage weakly supervised motion prediction approach, where FG/BG segmentation from Stage1 will facilitate the self-supervised motion learning in Stage2.
- A novel Consistency-aware Chamfer Distance loss, where multi-frame information is used to suppress potential outliers for robust self-supervised motion learning.

Motivation

- Ground truth motion data is scarce and expensive.
- There is still a large performance gap between self-supervised methods and fully supervised methods.



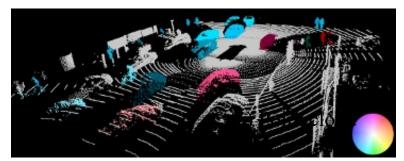
(a) Point cloud



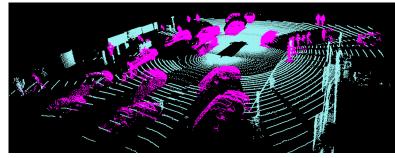
(b) Ground truth motion data (moving points are colored by their motion, static points are **Gray**)

Motivation

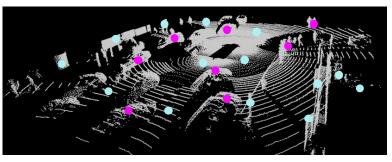
- Outdoor scenes can often be decomposed into mobile foregrounds and static backgrounds, which enables us to associate motion understanding with scene parsing.
- We study a novel weakly supervised motion prediction paradigm, where fully or partially (1%, 0.1%) annotated foreground/background binary masks are used for supervision.



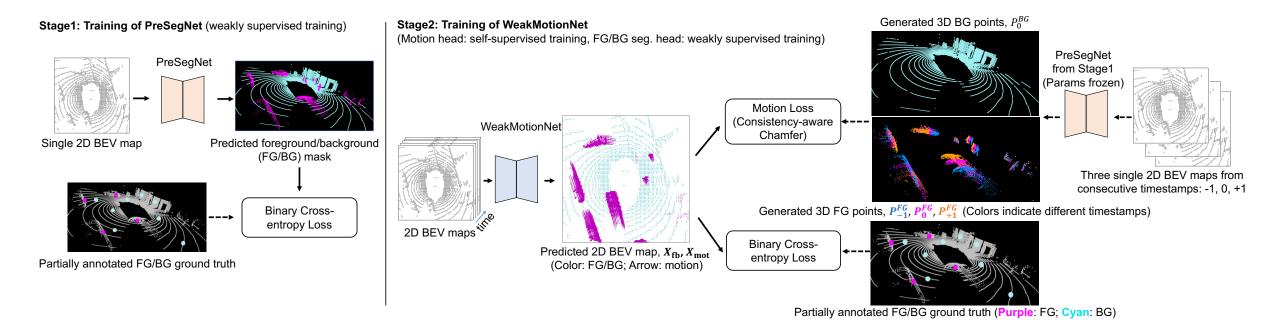
(b) Ground truth motion data (moving points are colored by their motion, static points are **Gray**)



(c) Fully annotated Foreground/Background masks (Purple: FG; Cyan: BG)



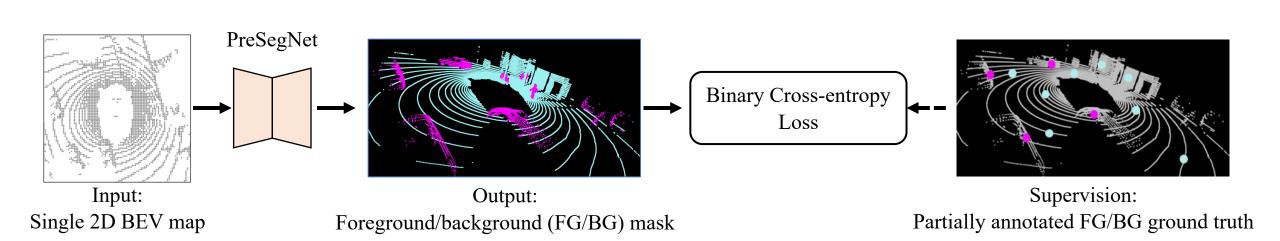
(e) Partially annotated Foreground/ Background masks



• We propose a two-stage weakly supervised approach, where the segmentation model trained with the incomplete binary masks in Stage1 will facilitate the self-supervised learning of the motion prediction network in Stage2 by estimating possible moving foregrounds in advance.

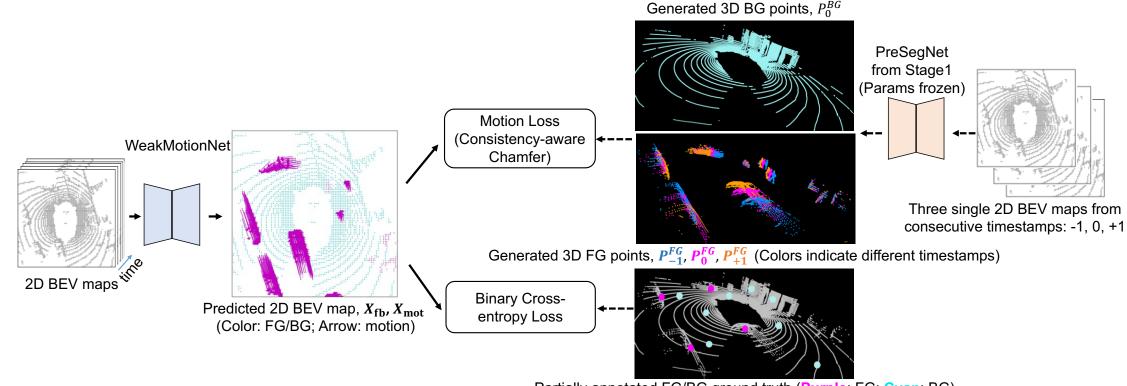
Method: two-stage weakly supervised motion prediction approach

Stage1: Training of PreSegNet (weakly supervised training for FB/BG segmentation)



Stage2: Training of Training of WeakMotionNet

(Motion head: self-supervised training, FG/BG seg. head: weakly supervised training)



Partially annotated FG/BG ground truth (Purple: FG; Cyan: BG)

Consistency-aware Chamfer loss for self-supervised motion learning in Stage2

Consistency-aware Chamfer (CCD) loss:

 $\mathcal{L}_{CCD}(P_{-1}, P_0, P_{+1}, F) = \mathcal{L}_{SCCD}(\widehat{P}_{0,b}, P_{-1}, w_0, w_{-1}) + \mathcal{L}_{SCCD}(\widehat{P}_{0,f}, P_{+1}, w_0, w_{+1})$

 P_{-1}, P_0, P_{+1} : point clouds from the past (-1), current (0) and future (+1) frames F: predicted motion from current frame (0) to future (+1) frame $\hat{P}_{0,f} = P_0 + F, \quad \hat{P}_{0,b} = P_0 - F$: forward and backward warped point cloud w_{-1}, w_0, w_{+1} : confidence weights for the three point clouds

Each term in (CCD) loss:

$$\mathcal{L}_{SCCD}(\widehat{\boldsymbol{P}}_{0,f}, \boldsymbol{P}_{+1}, \boldsymbol{w}_{0}, \boldsymbol{w}_{+1}) = \frac{1}{\|\boldsymbol{w}_{0}\|_{1}} \sum_{i=1}^{N_{0}} w_{0}(i) \min_{\boldsymbol{s} \in \boldsymbol{P}_{+1}} \|\widehat{\boldsymbol{p}}_{0,f}(i) - \boldsymbol{s}\|_{1} + \frac{1}{\|\boldsymbol{w}_{+1}\|_{1}} \sum_{j=1}^{N_{+1}} w_{+1}(j) \min_{\boldsymbol{s} \in \widehat{\boldsymbol{P}}_{0,f}} \|\boldsymbol{p}_{+1}(j) - \boldsymbol{s}\|_{1}$$

Improvements of CCD loss compared to typical Chamfer distance loss:

(1) exploit supervision from multi-frame point clouds

(2) employ multi-frame consistency to measure the confidence of points and assign uncertain points fewer weights to suppress potential outliers.

(3) adopt L1-norm to calculate the distance

Method	Supervision	Modality	Static		Speed \leq 5m/s		Speed > 5m/s	
	Supervision	Wiodanty	Mean ↓	Median \downarrow	Mean \downarrow	Median \downarrow	Mean ↓	Median \downarrow
FlowNet3D [25]	Full.	LiDAR	0.0410	0	0.8183	0.1782	8.5261	8.0230
HPLFlowNet [14]	Full.	LiDAR	0.0041	0.0002	0.4458	0.0960	4.3206	2.4881
PointRCNN [34]	Full.	LiDAR	0.0204	0	0.5514	0.1627	3.9888	1.6252
LSTM-ED [33]	Full.	LiDAR	0.0358	0	0.3551	0.1044	1.5885	1.0003
PillarMotion [26]	Full.	LiDAR+Image	0.0245	0	0.2286	0.0930	0.7784	0.4685
MotionNet [42]	Full.	LiDAR	0.0201	0	0.2292	0.0952	0.9454	0.6180
BE-STI [41]	Full.	LiDAR	0.0220	0	0.2115	0.0929	0.7511	0.5413
PillarMotion [26]	Self.	LiDAR+Image	0.1620	0.0010	0.6972	0.1758	3.5504	2.0844
Ours (0.1%)	Weak. (0.1% FG/BG masks)	LiDAR	0.0426	0	0.4009	0.1195	2.1342	1.2061
Ours (1%)	Weak. (1% FG/BG masks)	LiDAR	0.0558	0	0.4337	0.1305	<u>1.7823</u>	1.0887
Ours (100%)	Weak. (100% FG/BG masks)	LiDAR	0.0243	0	0.3316	0.1201	1.6422	1.0319

Table1: Evaluation results of motion prediction on nuScenes test set

 Table2: Motion prediction results on Waymo Dataset

Method	Supervision	Static	Speed \leq 5m/s	Speed > 5m/s	
MotionNet [42]	Full.	0.0263	0.2620	0.9493	
Ours (0.1%)	Weak.(0.1% FG/BG masks)	0.0297	0.3581	1.6362	
Ours (1.0%)	Weak.(1.0% FG/BG masks)	0.0334	0.3458	1.5655	
Ours (100%)	Weak.(100% FG/BG masks)	0.0219	0.3385	1.6576	

Method	Static Speed \leq 5m/s Speed $>$ 5m/					
1% masks w/o Stage1	1.1976	3.1904	8.9025			
1% masks with Stage1 (Ours)	0.0558	0.4337	1.7823			

Table4: Ablation study for Consistency-aware Chamfer Distance (CCD) loss under the FG/BG annotation ratio of 1%.

Loss function in WeakMotionNet	L2-norm L1-norm	Future	Past	Confidence	Auxiliary FG/BG	Static	Speed \leq 5m/s	Speed > 5 m/s
Loss function in weakiviononinet		Frame	Frame	Reweight	Segmentation	Mean Error \downarrow		
Chamfer loss (Baseline)	\checkmark	\checkmark				0.4416	0.8087	2.3981
Chamfer-L1	\checkmark	\checkmark				0.2579 (-42%	6) 0.5110 (-37%)) 2.1229 (-11%)
Multi-frame Chamfer-L1	\checkmark	\checkmark	\checkmark			0.2677 (-39%	6) 0.5240 (-35%)) 1.7436 (-27%)
Consistency-aware Chamfer	\checkmark	\checkmark	\checkmark	\checkmark		<u>0.1469</u> (-67%	b) <u>0.4390</u> (-46%)) <u>1.7729</u> (-26%)
Consistency-aware Chamfer + Seg. (Ours, 1%)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.0558 (-87%	6) 0.4337 (-46%)) 1.7823 (-26%)

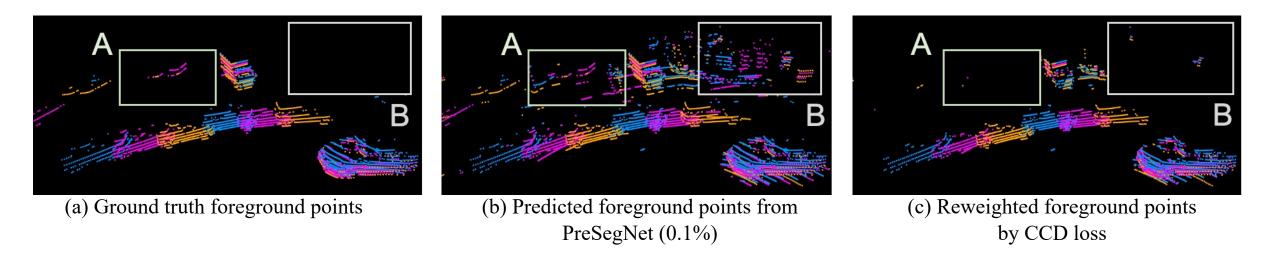


Figure 1. Visualization for PreSegNet and CCD loss. Outliers may be due to occlusions of points (e.g., region A), and inaccurate foreground predictions from PreSegNet (e.g., region B). In our CCD loss, we use multi-frame consistency to measure the confidence of points and assign uncertain points fewer weights, thereby suppressing potential outliers.

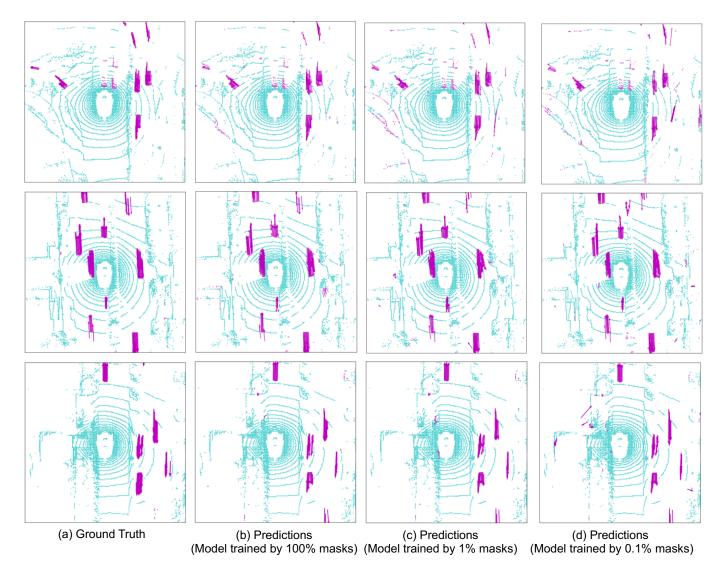


Figure 2. Qualitative results of motion prediction and foreground/background segmentation on nuScenes. We show motion with an arrow attached to each cell and represent different category with different color. **Purple**: Foreground; **Cyan**: Background.

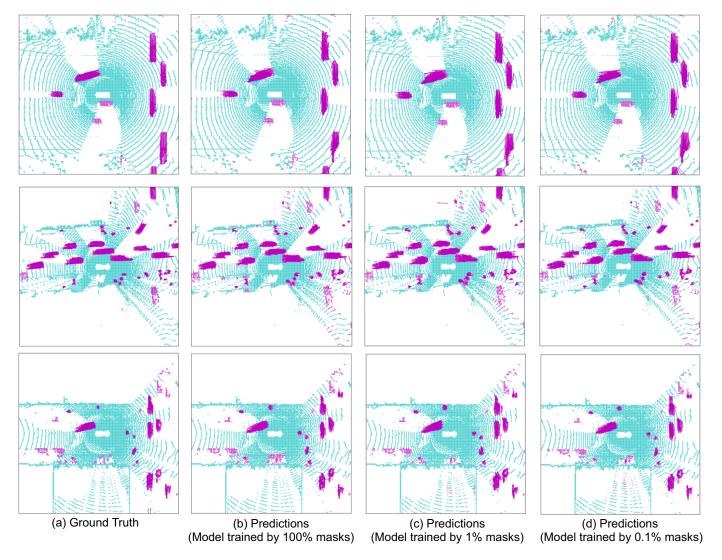


Figure 3. Qualitative results of motion prediction and foreground/background segmentation on Waymo. We show motion with an arrow attached to each cell and represent different category with different color. **Purple**: Foreground; **Cyan**: Background.

Thanks for your attention!