

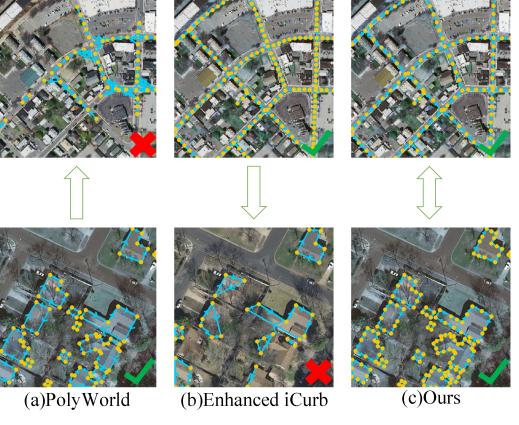
TopDiG: Class-agnostic Topological Directional Graph Extraction from Remote Sensing Images

Bingnan Yang , Mi Zhang , Zhan Zhang , Zhili Zhang , Xiangyun Hu

Wuhan University

+ E-Mail: mizhang@whu.edu.cn

TUE-AM-120A

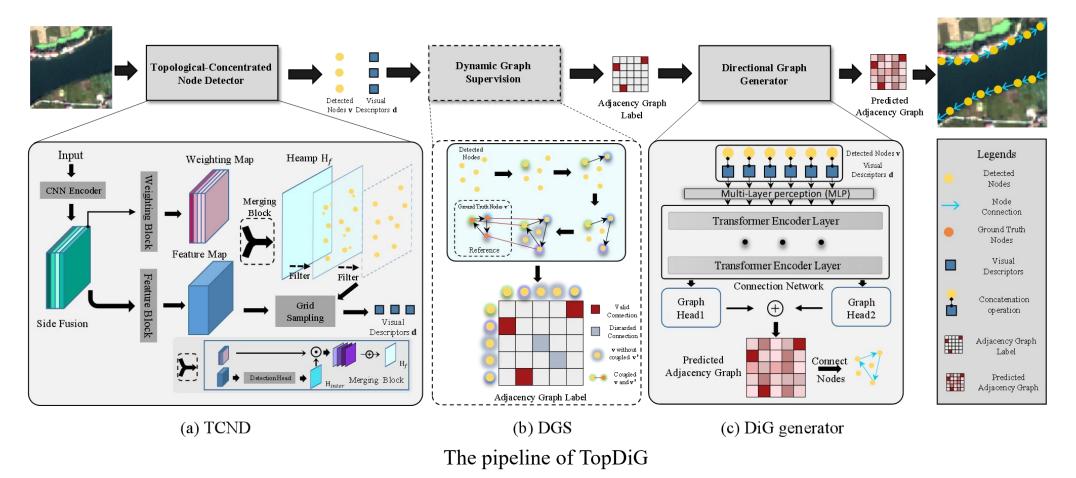


Challenges:

- Most existing vector extraction works focus on a specific target and are fragile to category variety;
- Especially Line- and polygon-shape objects are very different in topological structure.

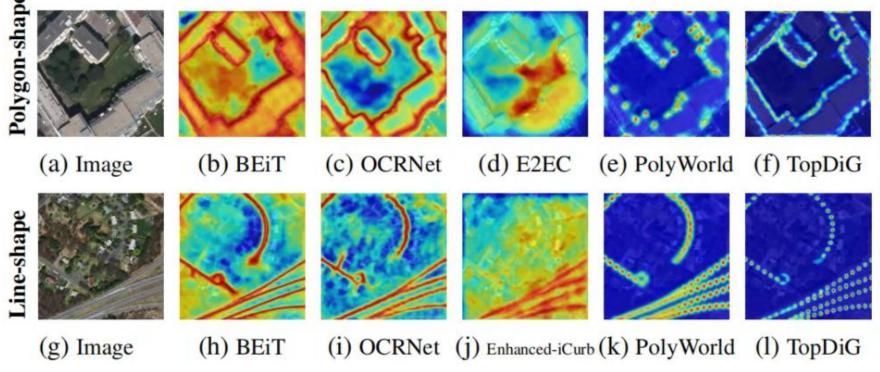
Contributions:

- We propose an innovative class-agnostic model TopDiG, to directly extract topological directional graphs from remote sensing images regardless of target types.
- We design topology-concentrated **node detector** to extract nodes and corresponding features **for both lineand polygon-shape targets**.
- We conduct dynamic graph supervision strategy to facilitate inference in practice .



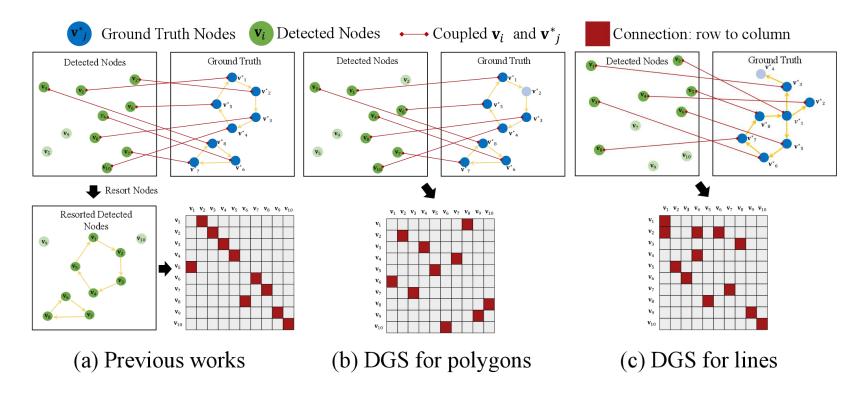
TopDiG can extract vector topology of both line- and polygon-shape objects

TopDiG formulates diverse vector topological structures **as directional graphs** and works by **sequentially predicting target nodes and their connections.**



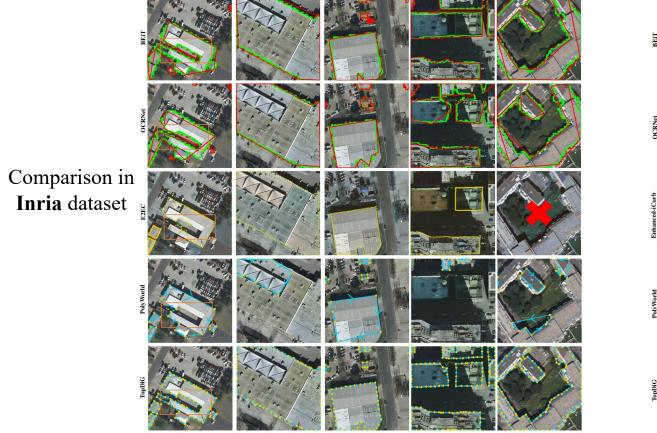
Topology-Concentrated Node detector(TCND):

- In satellite and aerial images, line shape objects can be seen as edges
- TCND minimizes sematic contexts and concentrates on low-level geometric features to achieve category independency


Visual comparison of attentive maps for a few methods

Dynamic Graph Supervision(DGS):

 Dynamically generates adjacency matrix labels according to real-time unordered predict nodes in each training


Visual comparison of the adjacency matrix label generation by previous works and DGS

Visual comparison:

 TopDiG performs better in topology quality and completeness, especially in concave/hierarchical polygon contours and parallel/crossing line object centerlines

Comparison in **Massachusetts** dataset

Quantitative comparison:

- TopDiG obtains competitive scores in pixel-wise metrics
- TopDiG achieve state-of-the-art performance in topology-wise metrics

Dataset	Method	PA ^{mask} ↑	Pixel-wise Metrics $F1^{mask}\uparrow$	mIoU ^{mask} ↑	PA ^{topo} ↑	Topology-wise Metrics F1 ^{topo} ↑	mIoU ^{topo} ↑	APLS
Inria [20]	DeepLabV3	94.94	91.93	85.45	93.20	76.77	66.48	40.48
	E2EC	88.46	70.85	63.64	92.69	65.83	58.61	39.46
	PolyWorld	90.82	83.54	73.41	92.92	73.60	63.47	40.03
	Ours	94.70	91.32	84.56	93.88	78.47	68.39	48.09
CrowdAI [20]	DeepLabV3	97.08	95.74	91.92	94.82	83.49	74.06	48.07
	E2EC	95.62	92.11	86.72	93.70	78.67	69.13	36.05
	PolyWorld	93.67	90.29	82.89	93.21	77.71	67.43	51.73
	Ours	96.45	94.77	90.23	94.51	82.20	72.51	59.61
GID [27]	DeepLabV3	99.05	97.34	94.92	99.23	79.27	70.55	80.14
	E2EC	<mark>98.85</mark>	76.03	69.68	99.16	73.90	66.32	76.17
	PolyWorld	98.07	90.05	85.66	99.17	73.65	66.04	75.84
	Ours	99.17	96.52	93.94	99.39	82.56	74.51	85.24
GF2 [37]	DeepLabV3	99.24	98.14	96.40	99.11	79.46	70.70	77.90
	E2EC	99.25	81.29	75.37	99.01	75.96	67.83	74.34
	PolyWorld	98.55	94.68	91.10	98.98	75.51	67.20	73.63
	Ours	99.40	98.20	96.56	99.28	83.57	75.28	81.31
Massachusetts [19]	DeepLabV3	-	-	- 1	95.75	77.94	68.30	51.40
	PolyWorld	-	-	-	94.28	76.56	66.59	47.74
	Ours	-	-	- 1	95.16	80.33	70.66	64.60

Quantitative comparison of TopDiG with segmentation-based, contour-based and graph generation methods