

DivClust: Controlling Diversity in Deep Clustering

Ioannis Maniadis Metaxas, Georgios Tzimiropoulos, Ioannis Patras

Poster: TUE-AM-325

Paper: https://arxiv.org/abs/2304.01042

Code: https://github.com/ManiadisG/DivClust

Overview

- DivClust is a method that can be incorporated in deep clustering frameworks to learn multiple clusterings while controlling their diversity
- DivClust:
 - a. Learns clusterings that satisfy user-defined diversity targets
 - b. Is straightforward to incorporate in deep clustering frameworks and introduces minimal computational cost
 - c. Can outperform singe-clustering frameworks by using consensus clustering algorithms to aggregate the learned clusterings

Motivation

- Learning multiple, diverse clusterings is important as:
 - a. There may be multiple meaningful ways to partition a set of data
 - b. Consensus clustering, which is known to produce more robust solutions, requires a diverse set of clusterings

Motivation

- Deep clustering models only learn one clustering
- Typical methods for producing multiple clusterings:
 - a. Are computationally expensive
 - b. Offer no control over the diversity of the clusterings
- This prevents the use of consensus clustering to improve outcomes

- We assume a base deep clustering framework, trained with its loss L_{main}
- Our goal: learn K clusterings whose similarity D^R is smaller than a target D^T
- The model is modified with K projection heads, each learning a clustering
- Without restrictions, we find that clusterings converge

- Each head h_k produces a matrix $P_k \in R^{CxN}$, mapping N samples to C clusters
- Its rows q∈R^N are cluster membership vectors, showing which samples belong to each cluster

• We define the inter-clustering similarity matrix for any two clusterings A & B to measure the similarity between any two clusterings

$$S_{AB}(i,j) = \frac{q_A(i) \cdot q_B(j)}{||q_A(i)||_2||q_B(j)||_2}$$

• Assuming a similarity upper bound d, we define the loss L_{div} as:

$$L_{div}(A,B) = \left[\frac{1}{C} \sum_{i=1}^{C} \max_{j} (S_{AB}(i,j)) - d\right]_{+}$$

 Minimizing L_{div} means that, on average, clusters of A and B will be no more similar than d

- The similarity upper bound d is updated dynamically in regular intervals
- We measure the inter-clustering similarity D^R and adjust d as follows:

$$d_{s+1} = \begin{cases} max(d_s(1-m), 0), & \text{if } D^R > D^T \\ min(d_s(1+m), 1), & \text{if } D^R \le D^T \end{cases}$$

• The loss tightens when the clusterings are *too* similar and relaxes when they satisfy the diversity target

 The loss L_{div} can be extended to any number of clusterings K and combined with the Deep Clustering framework's original loss L_{main}

• The final loss L_{total} the model trains with is:

$$L_{total} = \frac{1}{K} \sum_{k=1}^{K} \left[L_{main}(k) + \frac{1}{K-1} \sum_{k'=1, k' \neq k}^{K} L_{div}(k, k') \right]$$

- We incorporate DivClust in three deep clustering frameworks: IIC [1], PICA [2] & CC [3]
- To evaluate, we measure the similarity D^R of the learned clusterings, and use the SCCBG [4] consensus clustering algorithm to aggregate them
- Objectives:
 - a. $D^{R} \leq D^{T}$
 - b. The consensus clustering accuracy should be higher than the baseline framework, trained to learn a single clustering

[1] Ji, Xu, Joao F. Henriques, and Andrea Vedaldi. "Invariant information clustering for unsupervised image classification and segmentation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.

[2] Huang, Jiabo, Shaogang Gong, and Xiatian Zhu. "Deep semantic clustering by partition confidence maximisation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.

[3] Li, Yunfan, et al. "Contrastive clustering." Proceedings of the AAAI Conference on Artificial Intelligence. 2021.

[4] Zhou, Peng, Liang Du, and Xuejun Li. "Self-paced consensus clustering with bipartite graph." Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence. 2021.

• We first apply IIC, PICA & CC on the CIFAR 10 dataset

			Framework	Clusterings	D^T	D^R	Acc.
_				1	-	-	0.442
	For all trameworks:			20	1.	0.983	0.526
			IIC	20	0.95	0.939	0.533
	а	Inter-clustering similarity DR is lower than	пс	20	0.9	0.888	0.578
	а.	inter didsterning similarity Drv is lower than		20	0.8	0.8	0.653
		or very close to the diversity target DT		20	0.7	0.694	0.685
				1	-	-	0.533
	h	Consensus clustering accuracy outperforms the single-clustering baselines for most diversity levels	PICA	20	1.	0.991	0.596
	υ.			20	0.95	0.931	0.625
				20	0.9	0.891	0.652
				20	0.8	0.817	0.595
				20	0.7	0.703	0.671
		5		1	-	-	0.764
				20	1.	0.976	0.763
			CC	20	0.95	0.946	0.76
			cc	20	0.9	0.9	0.789
				20	0.8	0.814	0.819
				20	0.7	0.699	0.815

 We subsequently focus on CC and apply it on CIFAR10, CIFAR100, ImageNet-Dogs, ImageNet-10

 DivClust outperforms single-single clustering baselines and alternative methods of learning multiple clusterings

Dataset	D^T	CIFAR10	CIFAR100	ImageNet-10	ImageNet-Dogs
Metric	NMI	ACC	ACC	ACC	ACC
K-means	-	0.229	0.130	0.241	0.105
CC	-	0.790	0.429	0.893	0.429
CC-Kmeans	-	0.698	0.405	0.841	0.444
CC-Kmeans/S	-	0.69	0.402	0.842	0.444
CC-Kmeans/F	-	0.762	0.409	0.847	0.444
5	1.	0.763	0.424	0.895	0.451
	0.95	0.76	0.434	0.936	0.451
CC + DivClust	0.9	0.789	0.426	0.92	0.487
	0.8	0.819	0.414	<u>0.918</u>	0.448
	0.7	0.815	0.437	0.90	0.529

- The complexity of DivClust is O(nK²C²) for batch size n, K clusterings and C clusters
- In practice, the relative impact of DivClust is very small, particularly for large backbones

K	D^T	Т	Time (h)	Time Increase (%)
1	1.	-	39.1	0
20	1.	-	40.5	3%
20	0.9	20	44.6	14%

Runtimes of CC, trained for 1,000 epochs on CIFAR10, with image size 224x224 and a ResNet34 backbone.

Conclusion

- We introduce DivClust, a method that can be incorporated in deep clustering frameworks to learn multiple clusterings while controlling their diversity
- Experiments show that DivClust:
 - a. Effectively controls diversity according to user-defined targets
 - b. Allows for the use of consensus clustering, which outperforms singe-clustering solutions
 - c. Is straightforward to use and introduces minimal computational cost

