

MCF: Mutual Correction Framework for Semi-Supervised Medical Image Segmentation

Yongchao Wang, Bin Xiao, Xiuli Bi, Weisheng Li, Xinbo Gao

Chongqing University of Posts and Telecommunications Chongqing, China

Poster : WED-PM-314

Cognitive biases in MT based methods

Cognitive bias is the phenomenon in which the model persists in mispredictions, caused by overfitting to wrong supervision signals [1].

[1] Liu F, Tian Y, Chen Y, et al. ACPL: Anti-curriculum pseudo-labelling for semi-supervised medical image classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 20697-20706.

Method	Volumes used		Metrics			
	Labeled	Unlabeled	Dice(%)↑	Jaccard(%)↑	95HD(voxel)↓	ASD(voxel)↓
VNet	80(100%)	0	91.28±0.008	84.07±0.012	5.00 ± 0.757	1.61 ± 0.291
3D-ResVNet	80(100%)	0	91.09±0.013	$83.90 {\pm} 0.017$	4.77 ± 1.641	$1.75 {\pm} 0.195$
VNet	16(20%)	0	$83.34 {\pm} 0.023$	$72.49 {\pm} 0.029$	14.77 ± 1.169	$3.87 {\pm} 0.337$
3D-ResVNet	16(20%)	0	84.09 ± 0.022	$73.56 {\pm} 0.025$	$17.36 {\pm} 2.748$	$4.96 {\pm} 1.008$
MT	16(20%)	64	85.89±0.024	$76.58 {\pm} 0.027$	12.63 ± 5.741	3.44 ± 1.382
UA-MT	16(20%)	64	$85.98 {\pm} 0.014$	$76.65 {\pm} 0.017$	$9.86{\pm}2.707$	$2.68 {\pm} 0.776$
SASSNet	16(20%)	64	86.21±0.023	77.15 ± 0.024	$9.80{\pm}1.842$	$2.68 {\pm} 0.416$
DTC	16(20%)	64	$86.36 {\pm} 0.023$	$77.25 {\pm} 0.020$	$9.02{\pm}1.015$	$2.40 {\pm} 0.223$
*MC-Net	16(20%)	64	$87.65 {\pm} 0.011$	$78.63 {\pm} 0.013$	$9.70{\pm}2.361$	$3.01 {\pm} 0.700$
MCF(Ours)	16(20%)	64	88.71±0.018	80.41±0.022	6.32 ± 0.800	1.90±0.187

Table 1. 5-fold cross-validation comparison results on the LA MRI dataset (average \pm standard deviation)

* means we report our reproduced results here because MC-Net does not release source code.

Method	Volumes used		Metrics			
	Labeled	Unlabeled	Dice(%)↑	Jaccard(%)↑	95HD(voxel)↓	ASD(voxel)↓
VNet	62(100%)	0	80.75±0.010	68.49 ± 0.014	7.23 ± 0.564	1.69 ± 0.363
3D-ResVNet	62(100%)	0	79.78±0.021	$67.29 {\pm} 0.025$	$7.30{\pm}1.632$	$1.60{\pm}0.074$
VNet	12(20%)	0	64.18±0.073	$49.26 {\pm} 0.077$	17.74 ± 3.572	$4.69 {\pm} 0.935$
3D-ResVNet	12(20%)	0	66.53±0.043	$51.25 {\pm} 0.047$	19.01 ± 4.129	5.64 ± 1.467
MT	12(20%)	50	74.43±0.024	60.53±0.030	14.93 ± 2.000	4.61 ± 0.929
UA-MT	12(20%)	50	74.01±0.029	60.00 ± 3.031	17.00 ± 3.031	5.19 ± 1.267
SASSNet	12(20%)	50	73.57±0.017	$59.71 {\pm} 0.020$	$13.87 {\pm} 1.079$	3.53 ± 1.416
DTC	12(20%)	50	73.23±0.024	$59.18 {\pm} 0.027$	13.20 ± 2.241	$3.81 {\pm} 0.953$
*MC-Net	12(20%)	50	73.73±0.019	$59.19 {\pm} 0.021$	13.65 ± 3.902	$3.92{\pm}1.055$
MCF(Ours)	12(20%)	50	75.00±0.026	61.27±0.030	11.59±1.611	3.27±0.919

Table 2. 4-fold cross-validation comparison results on the Pancreas CT dataset (average \pm standard deviation)

* means we report our reproduced results here because MC-Net does not release source code.

Effects of different components.

Method	Metrics					
Wiethou	Dice(%)↑	Jaccard(%)↑	95HD(voxel)↓	ASD(voxel)↓		
V	85.63	75.67	14.40	3.69		
V+CDR	87.69	78.34	8.57	2.31		
V+DCPLG	89.81	81.62	7.32	2.36		
R	85.67	75.49	13.16	3.25		
R+CDR	87.57	78.14	9.03	2.34		
R+DCPLG	89.27	80.69	6.86	2.10		
V-m-R	86.53	76.89	11.30	2.70		
V+R+CDR	88.21	79.16	7.89	1.98		
V+R+DCPLG	90.13	81.92	6.73	1.86		
MCF	90.49	82.70	5.62	1.61		

"V" refers to VNet

"R" refers to 3D-ResVNet

V-m-R refers integrating VNet and 3D-ResNet with the averaging operation

Ablation for rectification loss

Loss function	Metrics				
	Dice(%)↑	Jaccard(%)↑	95HD(voxel)↓	ASD(voxel)↓	
CE loss	90.28	82.34	5.60	1.68	
MSE loss	90.49	82.70	5.62	1.61	

Ablation for different values of $\boldsymbol{\beta}$

β	Metrics				
ρ	Dice(%)↑	Jaccard(%)↑	95HD(voxel)↓	ASD(voxel)↓	
0.3	90.23	82.32	5.89	1.69	
0.4	90.27	82.41	5.85	1.64	
0.5	90.49	82.70	5.62	1.61	
0.6	90.26	82.43	5.86	1.65	
0.7	90.24	82.38	5.88	1.67	

consistency regularization VS training and DCPLG pseudo label training

• We propose a new framework called MCF for semi-supervised medical image segmentation, which enables the network to be aware of its own mistakes and perform bias correction through inter-subnet interactions.

• The CDR takes the difference predictions of the subnets as potential bias areas and guides the network to review and correct them.

• The DCPLG is used to dynamically select pseudo-label generators to improve the quality of pseudo-labels.