

Boundary-Aware Backward-Compatible Representation via Adversarial Learning in Image Retrieval (AdvBCT)

Tan Pan*, Furong Xu*, Xudong Yang, Sifeng He, Chen Jiang, Qingpei Guo, Feng Qian, Xiaobo Zhang, Yuan Cheng, Lei Yang, Wei Chui

Poster Session: WED-PM-271

AdvBCT Overview:

- Goals: focus on the process of retrieval model upgrade.
- 1. Compatibility: Keep features consistent between two models to save time and resources during backfilling.
- 2. Disparity: Do not sacrifice the retrieval performance of the new model.
- Contributions:
- 1. Adversarial learning: minimize the gap between two feature spaces.
- 2. An elastic boundary constraint: balance disparity and compatibility.
- 3. Outperform other 4 methods in most allocation types .

Backward-Compatible Learning

Task: Ensure the compatibility of embedding representations between models. The new model can directly replace the old one and the embeddings of images in stock are updated on-the-fly.

Related Works:

- 1. point-to-point based(p2p):
- constraint old embeddings and new embeddings
- 2. point-to-set based(p2s):

constraint old class centers and new embeddings

Figure 1. The process of the compatible upgrade

Figure 2. Distributions of the old embeddings and new embeddings without compatibility.

AdvBCT Pipeline:

Classification Module: Ensure the discrimination of new embeddings

$$L_{cls} = -\frac{1}{N} \sum_{i=1}^{N} y_i log p_i$$

Adversarial Compatible Module: A discriminator to minimize the gap between two embedding spaces of two models $\hat{\theta}_d = \operatorname{argmin} E(\hat{\theta}_n, \theta_d)$

$$\theta_{d} = \underset{\theta_{d}}{\operatorname{argmin}} E(\theta_{n}, \theta_{d})$$
$$\hat{\theta}_{n} = \underset{\theta_{n}}{\operatorname{argmax}} E(\theta_{n}, \hat{\theta}_{d})$$

Boundary-aware Compatible Module: Balance disparity and compatibility

Boundary-aware Compatible Module:Why p2s constraint:

1. Applied to all pairs of samples, psp is influenced by outliers.

2. p2p constraint can be bounded by p2s constraint.

If compatible, the positive pairs and negative pairs should satisfy: (p2p constraint)

$$\forall \{i, j, k\}, y_i = y_j \neq y_k$$

$$\langle \phi_n(x_i), \phi_o(x_j) \rangle < \langle \phi_n(x_i), \phi_o(x_k) \rangle$$

$$\langle \phi_n(x_i), \phi_o(x_j) \rangle < \langle \phi_n(x_i), \phi_n(x_k) \rangle$$

According to the triangle inequality:

(p2s constraint)

$$B_{lower} = \|\phi_n(x_i) - E_o(X^c)\|_2 - \|\phi_o(x_j) - E_o(X^c)\|_2$$
(7)
$$B_{upper} = \|\phi_n(x_i) - E_o(X^c)\|_2 + \|\phi_o(x_j) - E_o(X^c)\|_2$$
(8)
$$B_{lower} \le \|\phi_n(x_i) - \phi_o(x_j)\|_2 \le B_{upper}$$
(9)

Why elastic boundary:

Define $E_o(X)$ as cluster centers $\mathcal{O} = \{o^1, o^2, \dots, o^C\}$ of the training data.

We can define p2s constraint as $\|\phi_n(x_i) - E_o(X^i)\|_2 < r_{max}^i$

 r_{max}^{i} represents the maximum distance of class i

Corner cases and outliers will make the distribution looser which leads to a larger r_{max}^{i} .

$$\begin{aligned} r_{e}^{k} &= w^{k} |r_{max}^{k} - t| \\ r_{emax}^{k} &= \{ \begin{matrix} r_{max}^{k} - r_{e}^{k} \ t < r_{max} \\ t - r_{e}^{k} \ t > r_{max} \end{matrix} \\ r_{emax}^{k} &= \{ \begin{matrix} (1 - w^{k}) r_{max}^{k} + w_{k} t \ t < r_{max} \\ w^{k} r_{max}^{k} + (1 - w_{k}) t \ t > r_{max} \end{matrix} \\ D_{k} &= \sum_{i=1}^{m} max(\langle \phi_{n}(x_{i}^{k}), o^{k} \rangle - r_{emax}^{k}, 0) \\ L_{p2s} &= \sum_{k=1}^{C} D_{k} \end{aligned}$$

Benchmarks and Metrics

- Data Allocation Types
- Extended-data:

 $T_{old} = 30\%$ images, $T_{new} = 100\%$ images

• Extenede-class:

 $T_{old} = 30\% classes, T_{new} = 100\% classes$

- Extended-backbone (class):
- Extended-class and $M_{old} = Res18$, $M_{new} = Res50$
- Extended-backbone (data):
- Extended-data and $M_{old} = Res18$, $M_{new} = Res50$

Allocation type	Old tra	in-set	New train-set			
Anocation type	#images	#classes	#images	#classes		
Extended-data	445,419	81,313	1,580,470	81,313		
Extended-class	470,369	24,393	1,580,470	81,313		
Extended-backbone (class)	445,419	81,313	1,580,470	81,313		
Extended-backbone (data)	470,369	24,393	1,580,470	81,313		

Train on GLDv2.

Test on RParis, ROxford, and GLDv2 test

Metrics

$$\mathcal{P}_{comp} = sigmoid(\frac{M(\phi_n, \phi_o; \mathcal{Q}, \mathcal{G}) - M(\phi_o, \phi_o; \mathcal{Q}, \mathcal{G})}{M(\phi_*, \phi_*; \mathcal{Q}, \mathcal{G}) - M(\phi_o, \phi_o; \mathcal{Q}, \mathcal{G})})$$
(16)
$$\mathcal{P}_{up} = sigmoid(\frac{M(\phi_n, \phi_n; \mathcal{Q}, \mathcal{G}) - M(\phi_*, \phi_*; \mathcal{Q}, \mathcal{G})}{M(\phi_*, \phi_*; \mathcal{Q}, \mathcal{G})})$$
(17)

$$\mathcal{P}_{\beta-score} = \frac{(1+\beta^2)\mathcal{P}_{comp}*\mathcal{P}_{up}}{\beta^2\mathcal{P}_{comp}+\mathcal{P}_{up}}$$
(18)

 $M(\phi_o, \phi_n; Q, G)$ represents the mAP with the setting that embeddings of Q and embeddings of G are extracted by ϕ_n and ϕ_o respectively.

Experiments

Allocation	Model _{old}	$Model_{new}$	RParis		ROxford		GLDv2-test		\mathcal{P}_{up}	\mathcal{P}_{comp}	$\mathcal{P}_{1-score}$
type			self	cross	self	cross	self	cross			
Extended-	ϕ_o^{R18}	-	75.45	-	49.15	-	10.03	-	-	-	-
	-	ϕ_*^{R18}	81.15	4.93	63.85	1.20	16.48	0.2	-	7.19	-
	ϕ_o^{R18}	ϕ^{R18}_{BCT}	80.58	77.37	56.34	49.66	14.61	11.30	48.02	54.71	51.13
Gutu	ϕ_o^{R18}	ϕ_{LCE}^{R18}	81.57	77.83	60.85	51.35	16.48	12.17	49.65	57.41	53.34
	ϕ_o^{R18}	ϕ^{R18}_{UniBCT}	80.93	78.30	57.24	50.97	16.06	13.25	48.90	59.19	53.52
	ϕ_o^{R18}	$\phi_{Hot-refres}^{R18}$	h 79.57	76.53	58.15	50.05	13.88	10.35	47.78	52.50	50.03
	ϕ_o^{R18}	ϕ^{R18}_{AdvBCT}	82.78	78.55	62.13	52.31	15.71	11.49	49.55	58.09	53.45
	ϕ_o^{R18}	-	74.29	-	54.34	-	11.43	-	-	-	-
F (1 1	-	ϕ_*^{R18}	81.15	4.93	63.85	1.29	16.48	0.2	-	3.38	-
Extended-	ϕ_{o}^{R18}	ϕ^{R18}_{BCT}	79.45	76.13	58.94	53.43	14.79	12.26	48.33	52.79	50.41
Class	ϕ_o^{R18}	ϕ_{LCE}^{R18}	81.26	76.78	60.49	54.29	16.07	12.04	49.37	53.95	51.51
	ϕ_o^{R18}	ϕ_{UniBCT}^{R18}	76.92	74.55	59.07	57.82	14.80	12.31	48.09	54.78	51.17
	ϕ_o^{R18}	$\phi_{Hot-refres}^{R18}$	h 78.93	75.33	60.31	51.68	14.0	10.41	48.06	47.26	47.57
	ϕ_o^{R18}	ϕ^{R18}_{AdvBCT}	82.05	77.16	64.51	54.82	16.44	12.05	50.16	54.87	52.35
	ϕ_o^{R18}	_	75.45	-	49.15	-	10.03	-	-	-	-
Extended-	-	ϕ_*^{R50}	87.66	4.81	76.56	2.26	22.12	0.2	-	15.44	
backbone	ϕ_o^{R18}	ϕ^{R50}_{BCT}	85.54	78.95	68.66	54.42	19.11	12.78	47.81	55.86	51.52
(data)	ϕ_o^{R18}	ϕ^{R50}_{LCE}	87.49	79.36	75.16	57.18	21.85	13.30	49.73	57.31	53.25
	ϕ_o^{R18}	ϕ^{R50}_{UniBCT}	84.37	78.91	67.42	56.18	21.57	13.42	48.48	56.80	52.31
	ϕ_o^{R18}	$\phi^{R50}_{Hot-refres}$	_h 86.78	78.81	75.10	57.84	20.61	12.41	49.19	56.53	52.60
	ϕ_o^{R18}	ϕ^{R50}_{AdvBCT}	86.79	79.08	75.71	59.03	20.77	12.75	49.31	57.30	53.01
3	ϕ_o^{R18}	-	74.29	-	54.34	-	11.43	-	-	-	
Extended-	-	ϕ_*^{R50}	87.66	4.81	76.56	2.26	22.12	0.2	-	11.46	-
backbone	ϕ_o^{R18}	ϕ^{R50}_{BCT}	84.18	77.12	68.93	57.52	18.85	13.47	47.71	54.59	50.91
(class)	ϕ_o^{R18}	ϕ^{R50}_{LCE}	85.77	77.31	72.89	58.95	20.84	14.00	49.04	55.67	52.15
	ϕ_o^{R18}	ϕ^{R50}_{UniBCT}	82.48	77.33	66.37	58.51	18.91	13.99	47.29	55.51	51.06
	ϕ_o^{R18}	$\phi^{R50}_{Hot-refres}$	h 85.62	77.29	73.95	56.83	20.47	12.44	49.01	53.63	51.21
	ϕ_o^{R18}	ϕ^{R50}_{AdvBCT}	86.24	78.31	73.93	60.33	22.03	13.54	49.65	56.64	52.83

The compatible training benchmark testing on BCT, LCE, Hot-refresh, UniBCT, and AdvBCT

Experiments

Ablation Study

#	\mathcal{L}_{cls}	\mathcal{L}_{adv}	\mathcal{L}_{p2s}	RParis		ROxford		RParis		ROxford	
				self	cross	self	cross	self	cross	self	cross
$1(\phi_o)$	\checkmark			75.45	-	49.15	<u></u>	74.29	<u></u>	54.34	-
$2(\phi_*)$	\checkmark			81.15	4.93	63.85	1.29	81.15	4.93	63.85	1.29
3		\checkmark		5.8	6.69	3.25	1.66	5.14	6.8	2.44	1.76
4			\checkmark	76.4	75.23	50.78	44.75	74.82	74.13	51.09	48.22
5	\checkmark	\checkmark		80.87	4.4	63.92	2.11	81.09	5.67	62.3	2.34
6	\checkmark		\checkmark	82.12	77.18	61.16	51.63	81.66	76.16	63.59	52.92
7		\checkmark	\checkmark	76.83	75.7	52.76	49.31	75.09	74.45	51.39	48.67
8	\checkmark	\checkmark	\checkmark	82.78	78.55	62.13	52.31	82.05	77.16	64.51	54.82

Comparison results of different components in Extended-data (left) and Extended-class (right)

The influence of parameter t in Extended-class

The converge trend of 5 methods

Conclusions

1. To better ensure compatibility, we designed the adversarial and boundary-aware compatible modules.

2. Adversarial compatible module aims to pull the embedding distributions of the old and new models close.

3. Boundary-aware compatible module is used to obtain a suitable boundary to constrain distance relationship between the new and old embeddings

4. We establish a comprehensive benchmark for subsequent researchers to handily contribute to the field.

Thanks for watching