

HIGHLIGHT PAPER, TUE-PM-266

Positive-Augmented Contrastive Learning for

Image and Video Captioning Evaluation

Sara Sarto, Manuele Barraco, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara

{name.surname}@unimore.it

University of Modena and Reggio Emilia, Italy

Main Contributions

- Existing metrics for image-text correspondence are either only based on (few) human references or multi-modal embeddings trained on noisy data.
- We propose a learnable metric for video and image captioning, which employs pre-training on web-collected data, generated data for data augmentation and the power of human annotations.
- Based on a *positive-augmented training* of a multimodal embedding space.
- Our metric outperforms previous reference-free and reference-based metrics in terms of *correlation with human judgment*.

Image	Candidate Captions	Evaluation Scores
	A black cow by a person.	METEOR CIDEr CLIP-S PAC-S 9.67 14.9 0.766 0.676
	Candidate CaptionsEvaluation SccA black cow by a person.METEORCIDErCLIP-9.6714.90.760A cow walking through a field.METEORCIDErCLIP- 15.015.017.20.750A silver bicycle is parked in a living room.METEORCIDErCLIP- 23.1A silver bicycle leaning up against a kitchen table and chairs.METEORCIDErCLIP- 23.1A yellow bus passes through an intersection.METEORCIDErCLIP- 42.7167.00.811A yellow bus is traveling down a city street just past an intersection.METEORCIDErCLIP- 33.994.50.81	METEOR CIDEr CLIP-S PAC-S 15.0 17.2 0.754 0.775
	A silver bicycle is parked in a living room.	METEOR CIDEr CLIP-S PAC-S 23.1 68.6 0.686 0.853
	A silver bicycle leaning up against a kitchen table and chairs.	METEOR CIDEr CLIP-S PAC-S 32.4 63.7 0.637 0.862
	A yellow bus passes through an intersection.	METEOR CIDEr CLIP-S PAC-S 42.7 167.0 0.816 0.836
	A yellow bus is traveling down a city street just past an intersection.	METEOR CIDEr CLIP-S PAC-S 33.9 94.5 0.813 0.844

Positive-Augmented Contrastive Learning

- Dual-encoder architecture comparing the visual and textual inputs via cosine similarity.
- Usage of *synthetic generators* of both visual and textual data

Fine-tuning on human annotated data by taking into account *contrastive relationship* between real and generated matching image-caption pairs.

 $L = L_{\mathcal{V},\mathcal{T}} + \lambda_v L_{\mathcal{V}',\mathcal{T}} + \lambda_t L_{\mathcal{V},\mathcal{T}'}$

 A batch of N real images V and their corresponding captions T

$$\mathcal{V} = [v_1, v_2, ..., v_N] \quad \mathcal{T} = [t_1, t_2, ..., t_N]$$

We adopt a symmetric infoNCE loss.

$$L_{\mathcal{V},\mathcal{T}} = -rac{1}{N}\sum_{i=1}^N \lograc{\exp(\cos(v_i,t_i)/ au)}{\sum_{j=1}^N \exp(\cos(v_i,t_j)/ au)} +
onumber \ -rac{1}{N}\sum_{i=1}^N \lograc{\exp(\cos(v_i,t_i)/ au)}{\sum_{j=1}^N \exp(\cos(v_j,t_i)/ au)}$$

We generate images thanks to Stable Diffusion¹.

$$\mathcal{V}' = [v_1', v_2', \dots, v_N']$$

We generate texts thanks to BLIP².

$$\mathcal{T}' = [t'_1, t'_2, \dots, t'_N]$$

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution image synthesis with latent diffusion models. In CVPR, 2022
 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation. In ICML, 2022.

AImage^{Lab}

Image Captioning Scores¹

The new positive-augmented CLIP is used to compute either the image captioning score and the video score.

```
	ext{PAC-Score}(t,v) = w \cdot \max(\cos(t,v),0), \ 	ext{RefPAC-Score}(t,v,R) = 	ext{H-Mean}(	ext{PAC-Score}(t,v), \ 	ext{max}(0, \max_{r \in R} \cos(c,r)))
```

In these formulas, cos(t, v) indicates the cosine similarity computed inside of the embedding space and w is a scaling factor to enhance numerical readability.

For PAC-S the value of the scaling factor is set to w=2, without affecting the ranking of the results.

Video Captioning Scores¹

The new positive-augmented CLIP is used to compute either the image captioning score and the video score.

$$ext{PAC-Score}(c,V) = rac{ ext{Score}(c,V)_c + ext{Score}(c,V)_f}{2}$$

Two granularity levels:

- Coarse-grained level \rightarrow Score $(c, V)_c$
- Fine-grained level \rightarrow Score $(c, V)_f$

$$ext{RefPAC-Score}(c,V,r) = rac{ ext{PAC-Score}(c,V) + \max_{r \in R} ext{Score}(c,r)}{2}$$

PAC score achieves the **best correlation with human judgment** and accuracy on all the considered image datasets, demonstrating its *effectiveness* compared to previously proposed metrics.

	Flickr8k-Expert Flickr8k-CF			Com	posite				Pascal-5	50S	-		
	Kendall τ_b	Kendall τ_c	Kendall τ_b	Kendall τ_c		Kendall τ_b	Kendall τ_c		HC	HI	HM	MM	
BLEU-1	32.2	32.3	17.9	9.3	BI FIL-1	29.0	31.3	length	51.7	52.3	63.6	49.6	_
BLEU-4	30.6	30.8	16.9	8.7		29.0	30.6	BLEU-1	64.6	95.2	91.2	60.7	
ROUGE	31.1	32.3	19.9	10.3	DLLU-4 DOLLCE	20.3	30.0	BLEU I BI FII-4	60.3	93.1	85.7	57.0	
METEOR	41.5	41.8	22.2	11.5	RUUGE	30.0	32.4	ROUGE	63.9	95.0	92.3	60.9	
CIDEr	43.6	43.9	24.6	12.7	METEOR	36.0	38.9	METEOD	66.0	07.7	04.0	66.6	
SPICE	51.7	44.9	24.4	12.0	CIDEr	34.9	37.7	CIDE:	66.5	97.7	94.0	65.2	
BERT-S		39.2	22.8		SPICE	38.8	40.3	CIDEr	00.3	97.9	90.7	03.2	
LEIC	46.6	-	29.5	_	BERT-S	_	30.1	BERT-S	65.4	96.2	93.3	61.4	
BERT-S++	-	46.7	-	-	BERT-S++	_	44.9	BERT-S++	65.4	98.1	96.4	60.3	
UMIC	-	46.8	-	-	TIGEr		45.4	TIGEr	56.0	99.8	92.8	74.2	
TIGEr	-	49.3	-	-	VI DEDTS core	-	4J.4 52.4	ViLBERTScore	49.9	99.6	93.1	75.8	
ViLBERTScore	-	50.1	-	-	VILDERISCOR	-	52.4	FAIEr	59.7	<u>99.9</u>	92.7	73.4	
MID	-	54.9	37.3	-	FAIEr	-	51.4	MID	67.0	99.7	<u>97.4</u>	<u>76.8</u>	
CLIP-S	51.1	51.2	34.4	17.7	CLIP-S	49.8	53.8	CLIP-S	55.9	99.3	96.5	72.0	_
CLII-5	53.9	54.3	36.0	18.6	DACS	51.5	55.7		60.6	99.3	96.9	72.9	
PAC-S	(+2.8)	(+3.1)	(+1.6)	(+0.9)	FAC-5	(+1.7)	(+1.9)	PAC-S	(+4.7)	(+0.0)	(+0.4)	(+0.9)	
RefCLIP-S	52.6	53.0	36.4	18.8	RefCLIP-S	51.2	55.4	RefCLIP-S	64.9	99.5	95.5	73.3	_
RefPAC-S	<u>55.4</u> (+2.8)	<u>55.8</u> (+2.8)	<u>37.6</u> (+1.2)	<u>19.5</u> (+0.7)	RefPAC-S	<u>52.8</u> (+1.6)	<u>57.1</u> (+1.7)	RefPAC-S	<u>68.2</u> (+3.3)	99.5 (+0.0)	95.6 (+0.1)	75.9 (+2.6)	

1. Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image description as a ranking task: Data, models and evaluation metrics. JAIR, 47:853–899, 2013

2. Somak Aditya, Yezhou Yang, Chitta Baral, Cornelia Fermuller, and Yiannis Aloimonos. From Images to Sentences through Scene Description Graphs using Commonsense Reasoning and Knowledge. 2015

3. Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. CIDEr: Consensus-based Image Description Evaluation. In CVPR, 2015

It works well on videos too.

	No	Ref	1	Ref	9 Refs		
	Kendall τ_b	Spearman ρ	Kendall τ_b	Spearman ρ	Kendall τ_b	Spearman ρ	
BLEU-1	-	-	12.2	15.9	28.9	37.0	
BLEU-4	-	-	12.6	16.4	22.4	29.5	
ROUGE	-	-	12.5	16.3	23.8	30.9	
METEOR	-	-	16.4	21.5	27.6	35.7	
CIDEr	-	-	17.3	22.6	27.8	36.1	
BERT-S	-	-	18.2	23.7	29.3	37.8	
BERT-S++	-	-	15.2	19.8	24.4	31.7	
EMScore	23.2	30.3	28.6	37.1	36.8	47.2	
PAC-S / RefPAC-S	<u>25.1</u> (+1.9)	<u>32.6</u> (+2.3)	<u>31.4</u> (+2.8)	<u>40.5</u> (+3.4)	<u>38.1</u> (+1.3)	<u>48.8</u> (+1.6)	

Human judgment correlation scores on the VATEX-EVAL¹ dataset. We show Kendall τ_B correlation score at varying of the number of reference captions.

And	it ha	llucinates	less	than	previous	metrics.
				•••••		

	FC	DIL	ActivityNet-FOIL
	Acc. (1 Ref)	Acc. (4 Refs)	Accuracy
BLEU-1	65.7	85.4	60.1
BLEU-4	66.2	87.0	66.1
ROUGE	54.6	70.4	56.7
METEOR	70.1	82.0	72.9
CIDEr	85.7	94.1	77.9
MID	90.5	90.5	-
CLIP-S	87.2	87.2	-
EMScore	-	-	89.5
DACS	89.9	89.9	90.1
PAC-5	(+2.7)	(+2.7)	(+0.6)
RefCLIP-S	91.0	92.6	-
EMScoreRef	-	-	92.4
RefPAC-S	<u>93.8</u> (+2.8)	<u>95.2</u> (+2.6)	<u>93.5</u> (+1.1)

We extend our analysis to two datasets for detecting hallucinations in textual sentences, namely FOIL² and ActivityNet¹.

Image	Candidate Captions	Evaluation Scores			
	A silver knife containing many carrots with long, green stems.	CLIP-S 0.942	PAC-S 0.854		
	A <i>silver bowl</i> containing many carrots with long, green stems.	CLIP-S 0.912	PAC-S 0.893		
*6	A person tries to catch a <mark>ball</mark> on a beach.	CLIP-S 0.781	PAC-S 0.798		
-	A person tries to catch a frisbee on a beach.	CLIP-S 0.759	PAC-S 0.828		
	A baby horse is seen standing in between another elephant's legs.	CLIP-S 0.782	PAC-S 0.793		
	A baby elephant is seen standing in between another elephant's legs.	CLIP-S 0.769	PAC-S 0.820		
	Different kinds of food on a plate with a cup.	CLIP-S 0.682	PAC-S 0.758		
	Different kinds of food on a plate with a fork.	CLIP-S 0.676	PAC-S 0.789		

1. Yaya Shi, Xu Yang, Haiyang Xu, Chunfeng Yuan, Bing Li, Weiming Hu, and Zheng-Jun Zha. EMScore: Evaluating Video Captioning via Coarse-Grained and Fine-Grained Embedding Matching. In CVPR, 2022

2. Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aur' elie Herbelot, Moin Nabi, Enver Sangineto, and Raffaella Bernardi. FOIL it! Find One mismatch between Image and Language caption. In ACL, 2017. 9

PAC-S achieves the best results across *all cross-modal backbones* and almost all datasets, overcoming correlation and accuracy scores of other metrics by a large margin.

		Flickr8k-Expert		Flickr	Flickr8k-CF		VATEX-EVAL		FOIL	ActivityNet-FOIL
		Kendall τ_b	Kendall τ_c	Kendall τ_b	Kendall τ_c	Kendall τ_b	Spearman ρ	Accuracy	Accuracy	Accuracy
	CLIP-S	51.7	52.1	34.9	18.0	-	-	81.1	90.6	-
CLIP ViT-B/16	EMScore	-	-	-	-	24 1	31.4	-	-	90.0
CLII VII-D/10	PAC-S	54.5	54.9	35.9	18.5	26.8	34.7	82.9	91.1	90.7
	140-5	(+2.8)	(+2.8)	(+1.0)	(+0 .5)	(+2.7)	(+3.3)	(+1.8)	(+0.5)	(+0.7)
CLIP ViT-L/14	CLIP-S	52.6	53.0	35.2	18.2	-	-	81.7	90.9	-
	EMScore	-	-	-	-	26.7	34.7	-	-	89.0
	PAC-S	55.4	55.8	36.8	19.0	28.9	37.4	82.0	91.9	91.2
		(+2.8)	(+2.8)	(+1.6)	(+0.8)	(+2.2)	(+2.7)	(+0.3)	(+1.0)	(+2.2)
	CLIP-S	52.3	52.6	35.4	18.3	-	-	81.2	88.9	-
OpenCLIP	EMScore	-	-	-	-	24.8	32.2	-	-	88.2
ViT-B/32	BACS	53.6	53.9	36.1	18.6	25.4	33.1	82.4	90.1	89.5
	FAC-5	(+1.3)	(+1.3)	(+0 .7)	(+0 .3)	(+0.6)	(+0.9)	(+1.2)	(+1.2)	(+1.3)
	CLIP-S	54.4	54.5	36.6	18.9	-	-	82.5	92.2	-
OpenCLIP	EMScore	-	-	-	-	27.0	35.0	-	-	90.7
ViT-L/14	DAC S	55.3	55.7	37.0	19.1	27.8	36.1	82.7	93.1	91.2
	FAC-5	(+0.9)	(+1.2)	(+0.4)	(+0.2)	(+0.8)	(+1.1)	(+0.2)	(+0.9)	(+0.5)

Qualitative Results

Image	Candidate Captions	Candidate Captions Evaluation Scores		Image	Candidate Captions	Evaluation Scores		
	A blue bird being held by a handler.	METEOR CIDEr CLIP-S 35.2 96.3 80.1	PAC-S 80.0		A passenger train in the snow.	METEOR CIDEr CLIP-S 26.8 89.7 83.5	PAC-S 83.1	
	A blue bird perched on a gloved hand.	METEOR CIDEr CLIP-S 18.6 39.0 76.1	PAC-S 82.1		A red train driving through a snow covered city.	METEOR CIDEr CLIP-S 27.2 72.6 81.4	PAC-S 85.7	
	A black boxer dog with a white underbelly and brown collar looks at the camera.	METEOR CIDEr CLIP-S 35.1 26.6 77.5	PAC-S 82.3		A dog pokes it's head out from under a pile of stuff.	METEOR CIDEr CLIP-S 25.8 60.5 67,5	PAC-S 75.6	
	A close up of a black pug.	METEOR CIDEr CLIP-S 11.6 21.1 71.0	PAC-S 83.5		A dog underneath a wooden beam.	METEOR CIDEr CLIP-S 22.0 38.9 63.9	PAC-S 81.6	
	Trains amble by the rail yard.	METEOR CIDEr CLIP-S 26.2 68.8 81.9	PAC-S 75.4		A large green coach with a bridge in the background	METEOR CIDEr CLIP-S 28.3 32.0 87.1	PAC-S 76.7	
	The red train and the yellow train on on the tracks.	METEOR CIDEr CLIP-S 14.7 28.3 79.8	PAC-S 81.6	06/26/2007	Green bus and tan truck on a city street with a man waiting to cross the street.	METEOR CIDEr CLIP-S 34.0 17.8 79.2	PAC-S 79.4	

Want to Know More?

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation Except for this watermark, it is identical to the accepted version; the final published version of the proceedings is available on IEEE Xplore.

GvF

Read the paper

https://github.com/aimagelab/pacscore

Thank you for your attention

Positive-Augmented Contrastive Learning for Image and Video Captioning Evaluation

Sara Sarto, Manuele Barraco, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara

{name.surname}@unimore.it

University of Modena and Reggio Emilia, Italy

