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Pairwise Correlation Based Representation
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Example: covariance matrix based visual representation.
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Confounding Effect in Pairwise Correlation
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Partial Correlation Estimation from CNN
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Number of channels vs. their resolutions in recent CNNs.
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Sparse Inverse Covariance Estimate (SICE)
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SICE is defined as follows:

𝐒∗ = arg max  logdet 𝐒 − trace 𝚺𝐒 − 𝜆 𝐒 1

where 𝚺 is a sample-based covariance matrix, and det(·), trace(·) and • 1 denote 
the determinant, trace and ℓ1-norm of a vectorization of matrix, respectively.

𝑆 ≻ 0



Proposed Iterative SICE (iSICE)
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Stochastic gradient descend (SGD) based optimisation.

iSICE module.



Partial Correlation Representaion
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State-of-the-art Performance
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MIT Indoor dataset CUB-200 dataset FGVC Aircraft dataset

Stanford Cars dataset ImageNet100/mini-ImageNet datasets

DTD datasetiNaturalist dataset



iSICE Integration With CNN
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Feature extraction layers Sample based covariance Proposed iSICE Routine layers

Three important iSICE paraments 1) Sparsity 2) Number of iterations and 3) Learning rate.  



Implementation Details

10

• VGG-16/19

• ResNet-50/101

• ResNeXt-50/101

• ConvNeXt-T/B

• Swin-T/B

AdamW

OptimiserNetwork ArchitecturesImplementation Library



Evaluation Datasets
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Experimental Results
iSICE Hyper-parameter Selection, e.g., sparsity.
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Experimental Results
iSICE vs. its covariance counterparts on scene, fine-grained and generic image dataset.
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ImageNet-100 dataset
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Experimental Results
iSICE with learning rate and sparsity modulators.
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Computation Cost
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Visualisation of Learned Features

17

Input Image GAP iSQRT-COV Precision Matrix iSICE
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Visit our project website for code and more details

https://csiro-robotics.github.io/iSICE

Scan with QR Reader
https://github.com/csiro-robotics/iSICE

https://csiro-robotics.github.io/iSICE
https://github.com/csiro-robotics/iSICE
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