

Poster ID# TUE-PM-201

Learning Partial Correlation based Deep Visual Representation for Image Classification

Saimunur Rahman CSIRO Data61, UOW

Piotr Koniusz CSIRO Data61, ANU

Lei Wang UOW

Luping Zhou USyD

Peyman Moghadam CSIRO Data61

Changming Sun CSIRO Data61

Pairwise Correlation Based Representation

Example: covariance matrix based visual representation.

Confounding Effect in Pairwise Correlation

Partial Correlation Estimation from CNN

channels >> height × width

Sparse Inverse Covariance Estimate (SICE)

SICE is defined as follows:

$$\mathbf{S}^* = \arg \max_{\mathbf{S} \geq 0} \operatorname{logdet}(\mathbf{S}) - \operatorname{trace}(\mathbf{\Sigma}\mathbf{S}) - \lambda \|\mathbf{S}\|_1$$

where Σ is a sample-based covariance matrix, and det(·), trace(·) and $\|\bullet\|_1$ denote the determinant, trace and $\ell 1$ -norm of a vectorization of matrix, respectively.

Proposed Iterative SICE (iSICE)

$$\begin{split} \frac{\partial J}{\partial \mathbf{S}} &= \frac{\partial}{\partial \mathbf{S}} \log \, \det(\mathbf{S}) - \frac{\partial}{\partial \mathbf{S}} \operatorname{trace}(\mathbf{\Sigma}\mathbf{S}) - \lambda \frac{\partial}{\partial \mathbf{S}} \|\mathbf{S}\|_{1} \\ &= \mathbf{S}^{-1} - \mathbf{\Sigma} - \lambda \Big(\frac{\partial}{\partial \mathbf{S}} \mathbf{S}^{+} - \frac{\partial}{\partial \mathbf{S}} \mathbf{S}^{-} \Big) \\ &= \mathbf{S}^{-1} - \mathbf{\Sigma} - \lambda \Big(\operatorname{sign}(\mathbf{S}^{+}) - \operatorname{sign}(\mathbf{S}^{-}) \Big), \end{split}$$

iSICE module.

Stochastic gradient descend (SGD) based optimisation.

Partial Correlation Representaion

iSICE Integration With CNN

Three important iSICE paraments 1) Sparsity 2) Number of iterations and 3) Learning rate.

Implementation Details

Implementation Library

Network Architectures

Optimiser

- VGG-16/19
- ResNet-50/101
- ResNeXt-50/101
- ConvNeXt-T/B
- Swin-T/B

Evaluation Datasets

Dataset	Total classes	Total images	Predefined	Major difficulty	
		1000 mages	Training images	Testing images	
MIT Indoor	67	6,700	5,360	1,340	difficult environment
Birds	200	11,788	5,994	5,794	subtle class difference
Aircraft	100	10,000	6,600	3,400	subtle class difference
Cars	196	16,185	8,144	8,041	cluttered background
DTD	47	5,640	4512	1128	complex structure
iNaturalist	5,089	675,170	579,184	95,986	class imbalance
mini-ImageNet	100	60,000	54,000	6,000	difficult environment
ImageNet100	100	1,35,000	130,000	5,000	difficult environment

Experimental Results

iSICE Hyper-parameter Selection, *e.g.*, sparsity.

	Backbone	ne iSQRT-COV [23]	Precision $\mathbf{\Omega}$	iSICE							
Dataset						Mean ± Std.					
				1.0	0.5	0.1	0.01	0.001	0.0001	0.00001	(iSICE)
MIT	VGG-16	76.12	80.15	77.46	78.13	78.13	78.66	78.58	78.96	78.96	78.41 ± 0.54
	ResNet-50	78.81	80.75	78.43	80.75	80.45	80.52	80.90	80.37	81.34	80.39 ± 0.93
Airplane	VGG-16	90.01	89.44	92.26	92.71	92.77	92.23	92.83	92.74	92.44	92.56 ± 0.25
	ResNet-50	90.88	91.15	92.89	92.65	92.89	92.74	92.83	92.56	92.56	92.73±0.14
Birds	VGG-16	84.47	83.36	86.04	86.47	86.35	86.52	85.59	86.31	86.28	86.22±0.32
	ResNet-50	84.26	84.67	84.62	85.16	85.30	85.90	86.05	85.90	85.59	85.50±0.51
Cars _	VGG-16	91.21	92.04	93.60	93.98	94.06	94.03	93.88	93.91	93.50	93.85±0.22
	ResNet-50	92.13	91.99	93.01	93.36	93.69	93.51	93.22	93.72	93.40	93.41±0.25

Experimental Results

iSICE vs. its covariance counterparts on scene, fine-grained and generic image dataset.

Method	Motrix Dim	Ν	/IT	Air	plane	В	sirds	(Cars	Av	erage
	Maura Dini.	VGG	ResNet								
iSQRT-COV	256×256	76.1	78.8	90.0	90.9	84.5	84.3	91.2	92.1	85.5	86.5
	512×512	76.9	82.8	91.5	91.1	85.0	84.5	92.2	92.1	86.4	87.6
Precision $\mathbf{\Omega}$	256×256	80.2	80.8	89.4	91.2	83.4	84.7	92.0	92.0	86.3	87.1
	512×512	80.7	82.7	90.1	91.5	84.9	84.0	92.5	92.6	87.0	87.7
SICE	128×128	71.0	73.1	85.5	86.9	77.3	78.0	87.0	87.9	80.2	81.5
	256×256	73.7	75.4	87.9	89.2	79.7	80.3	89.5	89.3	82.7	83.6
iSICE	256×256	78.7	80.5	92.2	92.7	86.5	85.9	94.0	93.5	87.9	88.2
	512×512	81.1	81.7	92.9	92.6	86.8	86.0	94.6	93.8	88.9	88.5

	Method	Backbone	Top-1	Top-5
	GAP [13]		71.0/69.5	90.9/88.9
ImageNet-100 dataset 🦯	iSQRT-COV [23]	ResNet-50/	71.5/70.2	90.5/89.7
	Precision Ω	VGG-16	71.1/71.0	90.1/90.1
	iSICE		74.8/73.4	92.0/91.8

and backbones.

its covariance counterparts on various datasets

vs.

SICE

BS

2

Ð

Exp

Precision Ω

iSICE (ours)

Precision Ω

iSICE (ours)

iSQRT-COV [23]

Method	Backbone	MIT	Airplane	Birds	Cars	DTD	iNatuarlist
GAP [37]		_	76.6	70.4	79.8	_	_
NetVLAD [2]		_	81.8	81.6	88.6	_	_
NetFV [28]		_	79.0	79.9	86.2	_	_
BCNN [27]		77.6	83.9	84.0	90.6	70.6	_
CBP [11]		76.2	84.1	84.3	91.2	67.7	_
LRBP [17]		_	87.3	84.2	90.9	_	_
KP [6]		_	86.9	86.2	92.4	_	_
HIHCA [4]		_	88.3	85.3	91.7	_	_
Improved BCNN [25]		_	88.5	85.8	92.0	_	_
SMSO [46]	VGG-16	79.5	_	85.0	_	_	_
MPN-COV [43] (reproduced)		_	86.1	82.9	89.8	_	_
iSQRT-COV [23] (reproduced)		76.1	90.0	84.5	91.2	71.3	56.2
DeepCOV [9]		79.2	88.7	85.4	91.7	_	_
DeepKSPD [9]		81.0	90.0	84.8	91.6	-	-
RUN [47]		80.5	91.0	85.7	_	-	_
FCBN [48]		80.3	90.5	85.5	_	-	_
TKPF [49]		80.5	91.4	86.0	_	-	-
Precision Ω		80.2	89.4	83.4	92.0	74.0	57.9
iSICE (ours)		78.7	92.2	86.5	94.0	74.7	59.8
CBP [11]		_	81.6	81.6	88.6	_	_
KP [6]		_	85.7	84.7	91.1	_	_
SMSO [46]		79.7	_	85.8	_	_	_
iSQRT-COV [23] (reproduced)		78.8	90.9	84.3	92.1	73.0	57.7
DeepCOV-ResNet [34]	ResNet-50	83.4	83.9	86.0	85.0	_	_
TKPF [49]		84.1	92.1	85.7	_	_	_
Precision Ω		80.8	91.2	84.7	92.0	73.7	59.6
iSICE (ours)		80.5	92.7	85.9	93.5	75.7	60.7
iSQRT-COV [23]		76.3	90.3	84.1	91.4	71.8	56.9
Precision $\mathbf{\Omega}$	VGG-19	79.6	91.1	83.2	92.2	74.2	57.3
iSICE (ours)		80.6	92.5	86.6	93.9	74.9	59.6
iSQRT-COV [23]		79.3	91.0	84.4	92.3	73.0	70.6
Precision Ω	ResNet-101	77.9	90.1	83.3	91.4	71.2	69.8
iSICE (ours)		81.0	92.9	86.6	93.6	75.4	72.0
iSQRT-COV [23]		81.6	91.3	86.2	92.4	75.7	72.2
Precision Ω	ResNeXt-101	85.7	90.2	84.6	89.9	76.9	72.3
iSICE (ours)		86.3	94.6	87.2	94.5	78.7	73.8
iSQRT-COV [23]		77.8	88.1	83.5	89.4	84.7	61.5
Precision Ω	ConvNext-T	78.5	81.2	83.7	92.2	83.9	59.3
iSICE (ours)		85.4	90.4	86.7	93.1	88.9	65.0
iSQRT-COV [23]		82.1	87.6	85.1	89.7	86.1	58.1

82.5

85.9

86.6

87.0

87.6

88.2

89.6

91.3

90.7

92.9

Swin-T

Swin-B

mini-ImageNet

_

_

-

76.2

_

_

_

81.0

78.7

_

-

70.7

_

_

65.6

72.0

75.4

73.8

77.1

73.9

73.0

78.0

76.1

77.6

81.0

82.0

83.6

85.1

67.7

65.6

69.1

64.9

66.4

68.4

59.1

61.9

69.7

67.3

72.4

90.5

91.3

92.0

93.1

93.3

86.5

88.3

79.4

80.1

79.8

84.9

86.5

88.0

87.7

88.3

Experimental Results

iSICE with learning rate and sparsity modulators.

Computation Cost

Time/batch (in secs.)

Time/epoch (in mins.)

Visualisation of Learned Features

Visit our project website for code and more details

https://csiro-robotics.github.io/iSICE

https://github.com/csiro-robotics/iSICE

Thank You