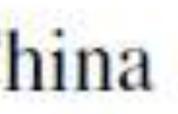
Paper tag: WED-PM-237

PDPP: Projected Diffusion for Procedure Planning in Instructional Videos

Hanlin Wang¹ Yilu Wu¹ Sheng Guo³ Limin Wang^{1, 2, \veedsymbol{\veedsymbol{B}}} ¹State Key Laboratory for Novel Software Technology, Nanjing University, China ²Shanghai AI Lab, China ³MYbank, Ant Group, China

上海人工智能实验室 Shanghai Artificial Intelligence Laboratory

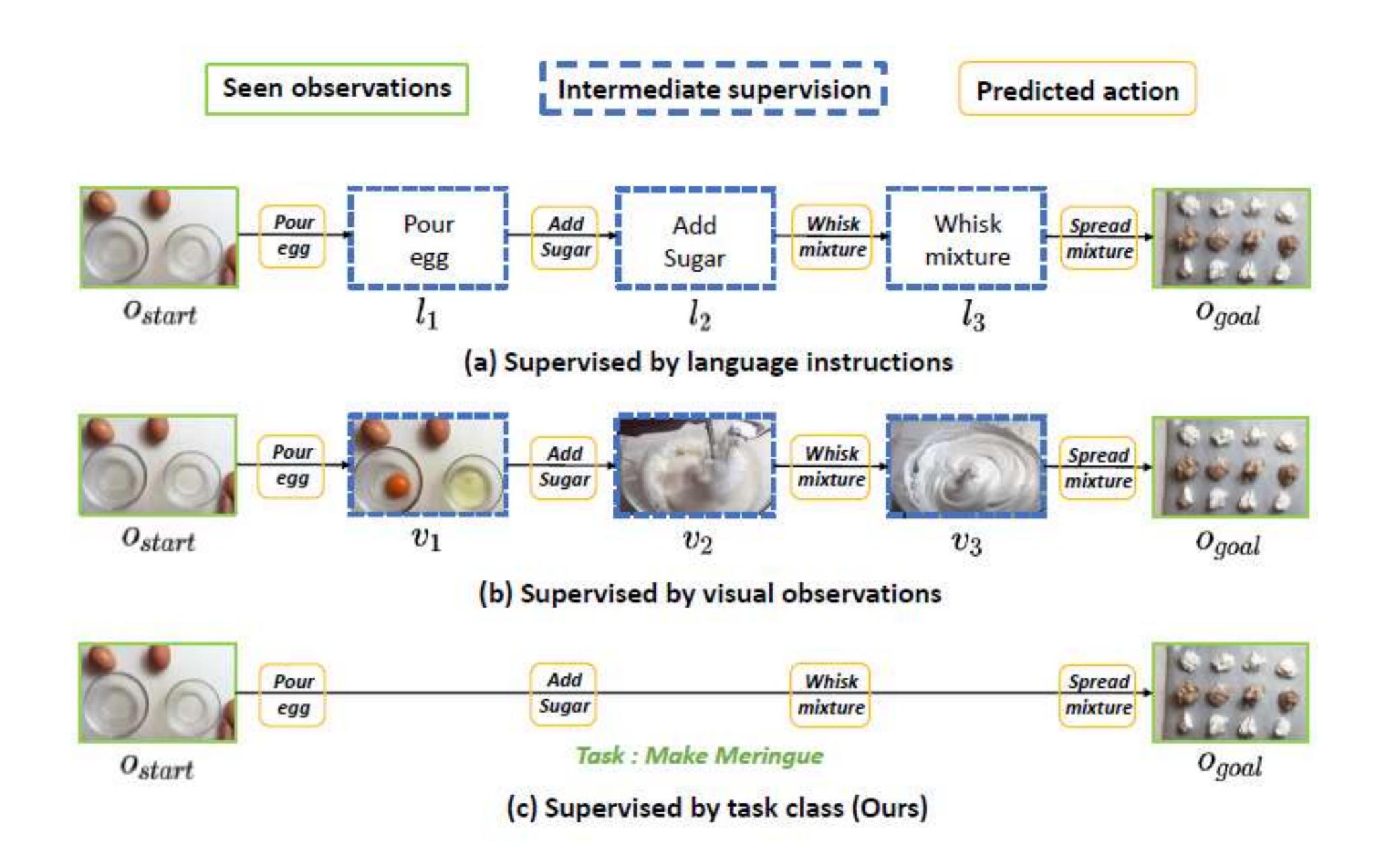


Quick Preview

in unstructured real-life videos.

Quick Preview

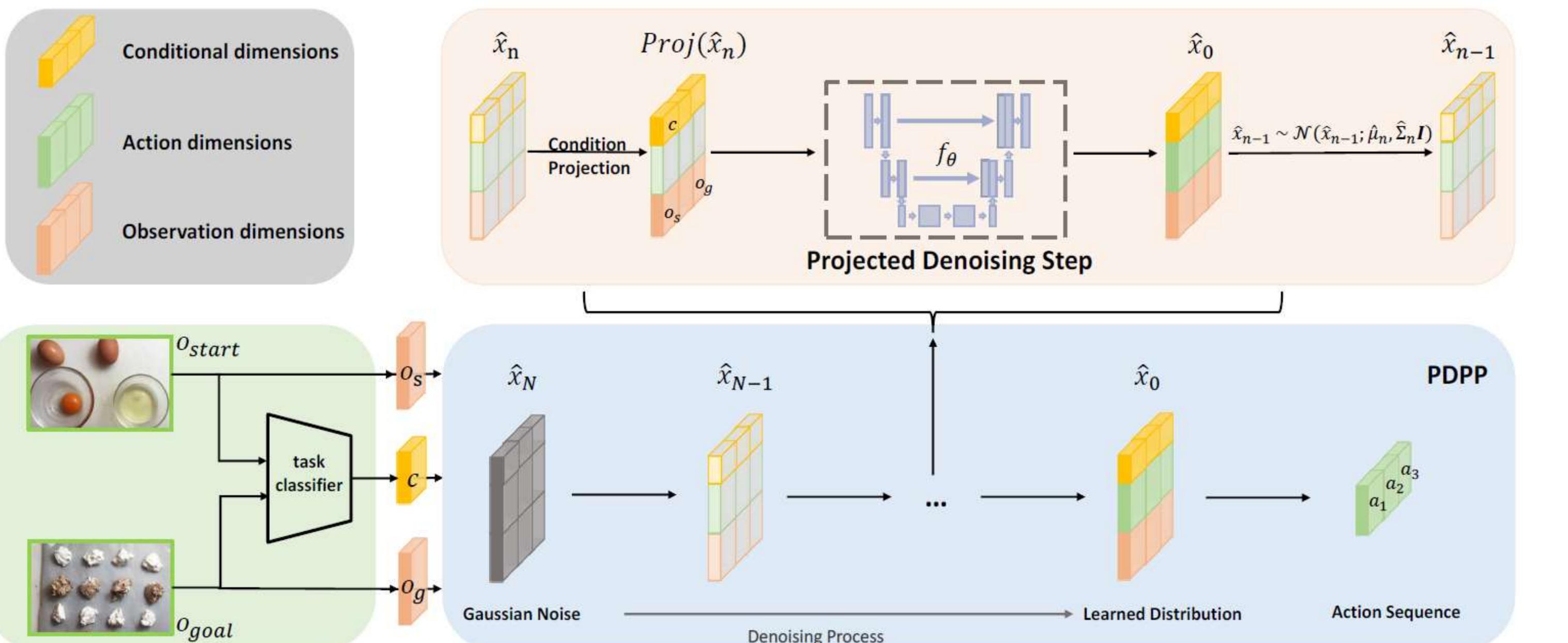
> We propose a **diffusion-based model, PDPP**, for procedure planning in instructional videos.

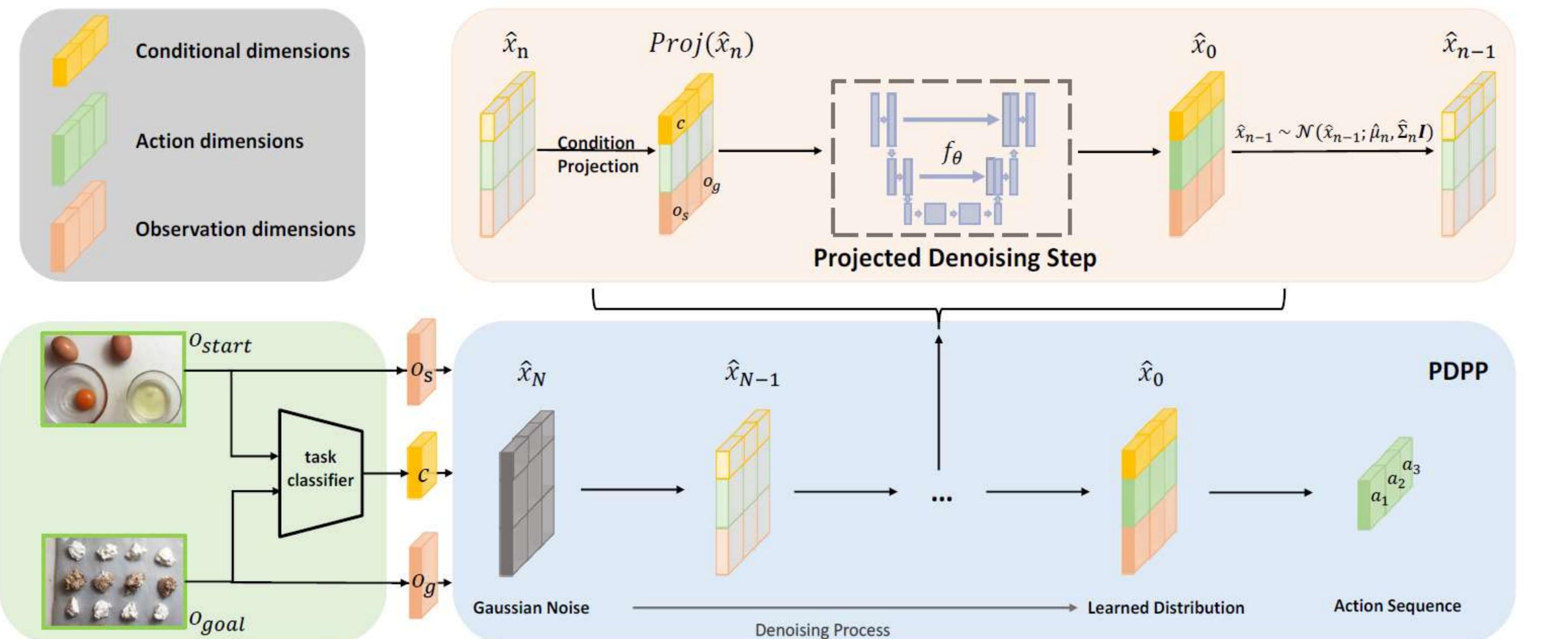


> Procedure planning in instructional videos requires a model to make goal-directed plans, given the current visual observations

> We remove the expensive intermediate supervision, and simply use task labels from instructional videos as supervision instead.

- sequence distribution.





Quick Preview

> The key insight of PDPP is to treat this problem as a distribution fitting problem and model the whole intermediate action

> To model the uncertainty in procedure planning, we propose our PDPP based on diffusion models.

> We add the **condition projection operation** into the diffusion process to ensure correct guidance for diffusion.

> Our PDPP model achieves the state-of-the art performance on three datasets with different scales, even without the task supervision.

> Our PDPP model has an excellent ability to model the uncertainty in procedure planning and can produce both diverse and reasonable plans.

lain	Resul	lts										T = 3			Ί	² =4	
						Mo	dels		Superv	ision SR ⁴	n	nAcc†	mIoU↑	SR	m	Acc†	mIoU↑
						Ra	ndom	1	1.000	<0.0	1	0.94	1.66	<0.0	01 0	.83	1.66
						Ret	trieval-B	lased		8.05	5	23.30	32.06	3.95	5 22	2.22	36.97
						WI	TDO [0]	-	1.87		21.64	31.70	0.77	7 1	7.92	26.43
		T = 3	T = 4	T = 5	T = 6	- UA	AA [11]	-	2.15	5	20.21	30.87	0.98	3 19	9.86	27.09
	2	- 14 J. 19 18	01 2242	10	00 100 mg		N [29]		V	2.89)	24.39	31.56	1.19) 2	1.59	27.85
Models		SR↑	SR↑	SR↑	SR↑		N [4]		V	12.1		31.29	47.48	5.97		7.10	48.46
Retrieva	I-Based	8.05	3.95	2.40	1.10			v/o Aug. [2]	v	18.0		43.86	57.16	-	_		
DDN [4]		12.18	5.97	3.10	1.20		t-GAIL	気化などに見たい	v	21.2		49.46	61.70	16.4	1 1	3.05	60.93
P ³ IV [30	51	23.34	13.40	7.21	4.40		IV [36]		V I								
Ours _{Bas}		26.47	15.40	9.37	6.76							49.96	73.89	13.4		4.16	70.01
		37.20		13.58	- A CONTRACTOR OF		rs _{Base}		C	26.4		55.35	58.95	15.4		9.42	56.99
Ours _{Hov}	U	57.20	21.40	13.30	8.47	Ou	rs _{How}		C	37.2	0	6 <mark>4.6</mark> 7	66.57	21.4	8 5	7.82	65.13
				NIV			COIN		-				NIV			COIN	
Horizon	Models	Su	p. SR↑	mAcc [†]	mIoU↑	SR↑	mAcc†	mloU↑	Horizon	Models	Sup.	SR↑	mAcc [†]	mIoU↑	SR↑	mAcc	mIoU↑
	Random	84	2.21	4.07	6.09	< 0.01	< 0.01	2.47	3	Random	57	1.12	2.73	5.84	< 0.01	< 0.01	2.32
	Retrieval	1		est. an		4.38	17.40	32.06		Retrieval	-	100	and a second		2.71	14.29	36.97
T = 3	DDN [4]	1	18.41	32.54	56.56	13.9	20.19	64.78	T = 4	DDN [4]	V	15.97	27.09	53.84	11.13	17.71	68.06
1-5	Ext-GAIL	[2]	22.11	42.20	65.93	-	12	-	3 - 4	Ext-GAIL [2]	V	19.91	36.31	53.84	2	2	×.
	P ³ IV [36]	1	. 24.68	49.01	74.29	15.4	21.67	76.31		P ³ IV [36]	L	20.14	38.36	67.29	11.32	18.85	70.53
	Ours	(31.25	49.26	57.92	21.33	45.62	51.82		Ours	C	26.72	48.92	59.04	14.41	44.10	51.39

Quick Preview

Metric↓	Model	T = 3	T=4	T=5	T=6
NLL	Deterministic	3.57	4.29	4.70	5.12
	Noise	3.58	4.04	4.45	4.79
	Ours	3.61	3.85	3.77	4.06
	Deterministic	2.99	3.40	3.54	3.82
KL-Div	Noise	3.00	3.15	3.30	3.49
	Ours	3.03	2.96	2.62	2.76

Diversity and accuracy of plans

Metric [↑]	Mode1	T = 3	T=4	T=5	T=6	
	Deterministic	39.03	21.17	12.59	7.47	
SR	Noise	34.92	18.99	12.04	7.82	
	Ours	37.20	21.48	13.58	8.47	
Mode Prec	Deterministic	55.60	45.65	35.47	25.24	
	Noise	51.04	43.90	34.35	24.51	
	Ours	53.14	44.55	36.30	25.61	
	Deterministic	34.13	18.35	11.20	6.75	
ModeRec	Noise	39.42	25.56	15.67	11.04	
	Ours	36.49	31.10	29.45	22.68	

Introduction

Motivation

> Previous approaches for procedure planning in instructional videos treat it as a sequence planning problem and focus on predicting each action accurately.

- planning process
- process
- **D** Require **heavy intermediate** visual or language annotations

> Modeling the uncertainty in procedure planning is also important.

Introduction

Two-branch autoregressive method to predict the intermediate states and actions step by step: easy to accumulate errors during the

There might be more than one reasonable plan sequences to transform from the given start state to goal state

Eg: change the order of "add sugar" and "add butter" in task "making cake" will not affect the final result

Transformer-based single branch non-autoregressive model: multiple learning objectives, **complex** training schemes and tedious inference

Motivation

> Taking the whole intermediate action sequence distribution as learning objective rather than every discrete action.

> Modeling the uncertainty in procedure planning with diffusion model.

Introduction

Transform the planning problem to a sampling process from the learned distribution

Optimize model with a simple MSE loss, which results in less learning objectives and simpler training schemes

Use task labels from instructional videos as supervision instead

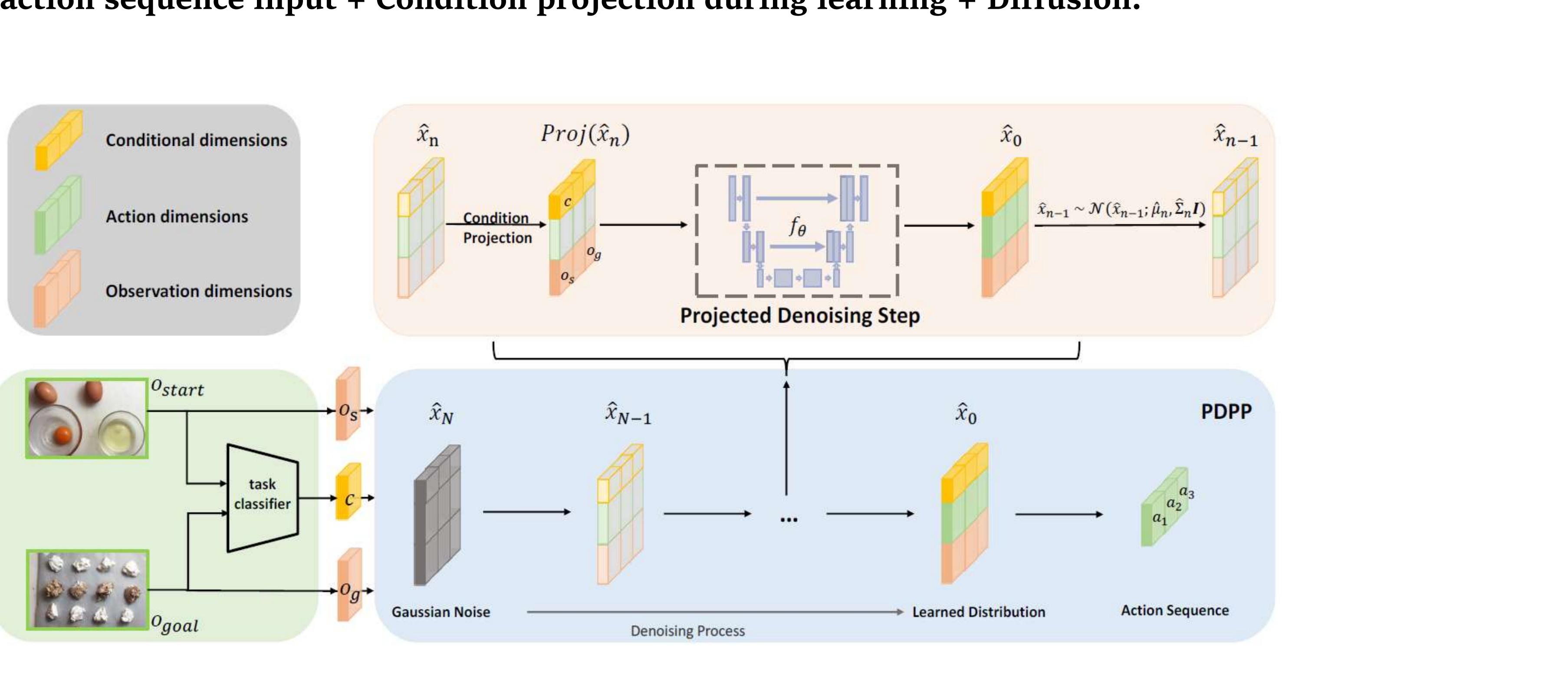
Adding randomness to our distribution-fitting process by learning with a diffusion model

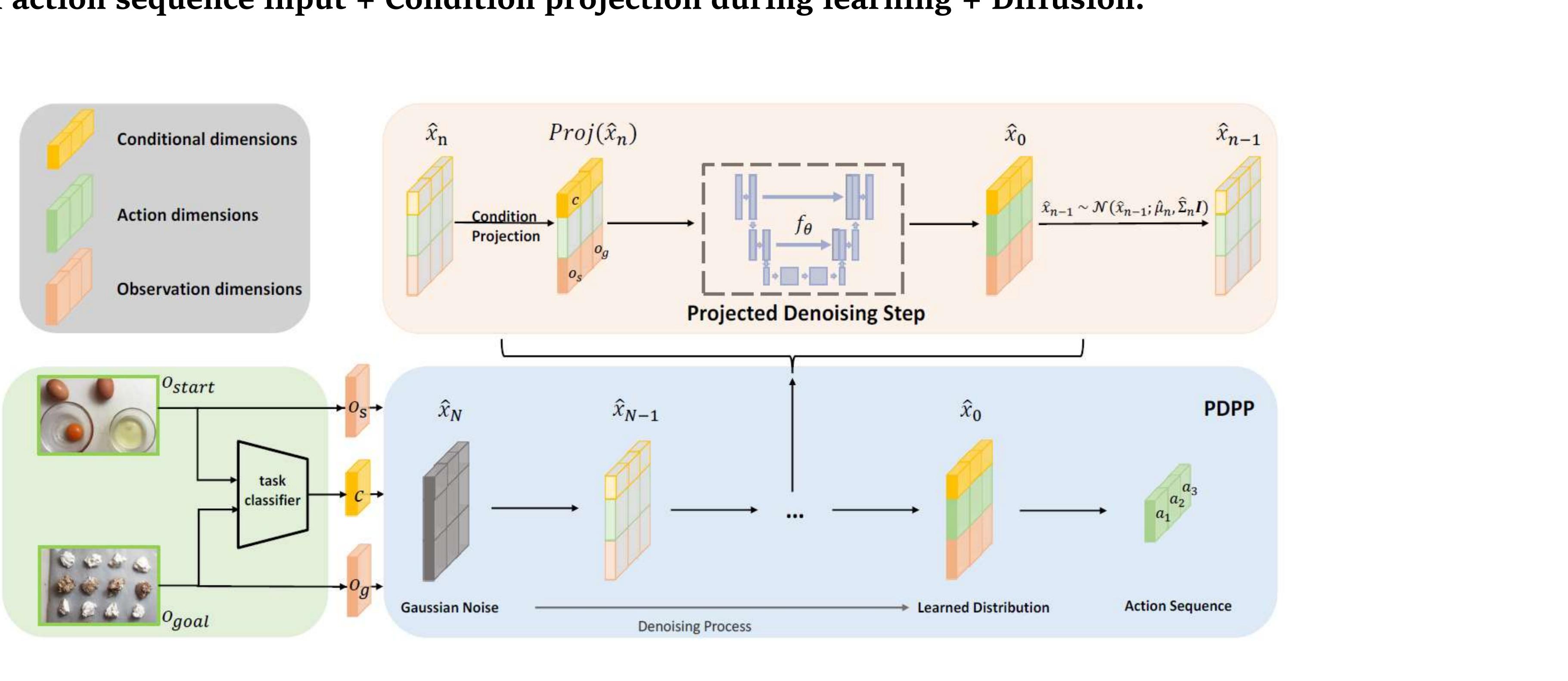
Convenient to apply conditional diffusion process with the given observations and task class based on diffusion models

Method

Projected Diffusion for Procedure Planning in Instructional Videos (PDPP)

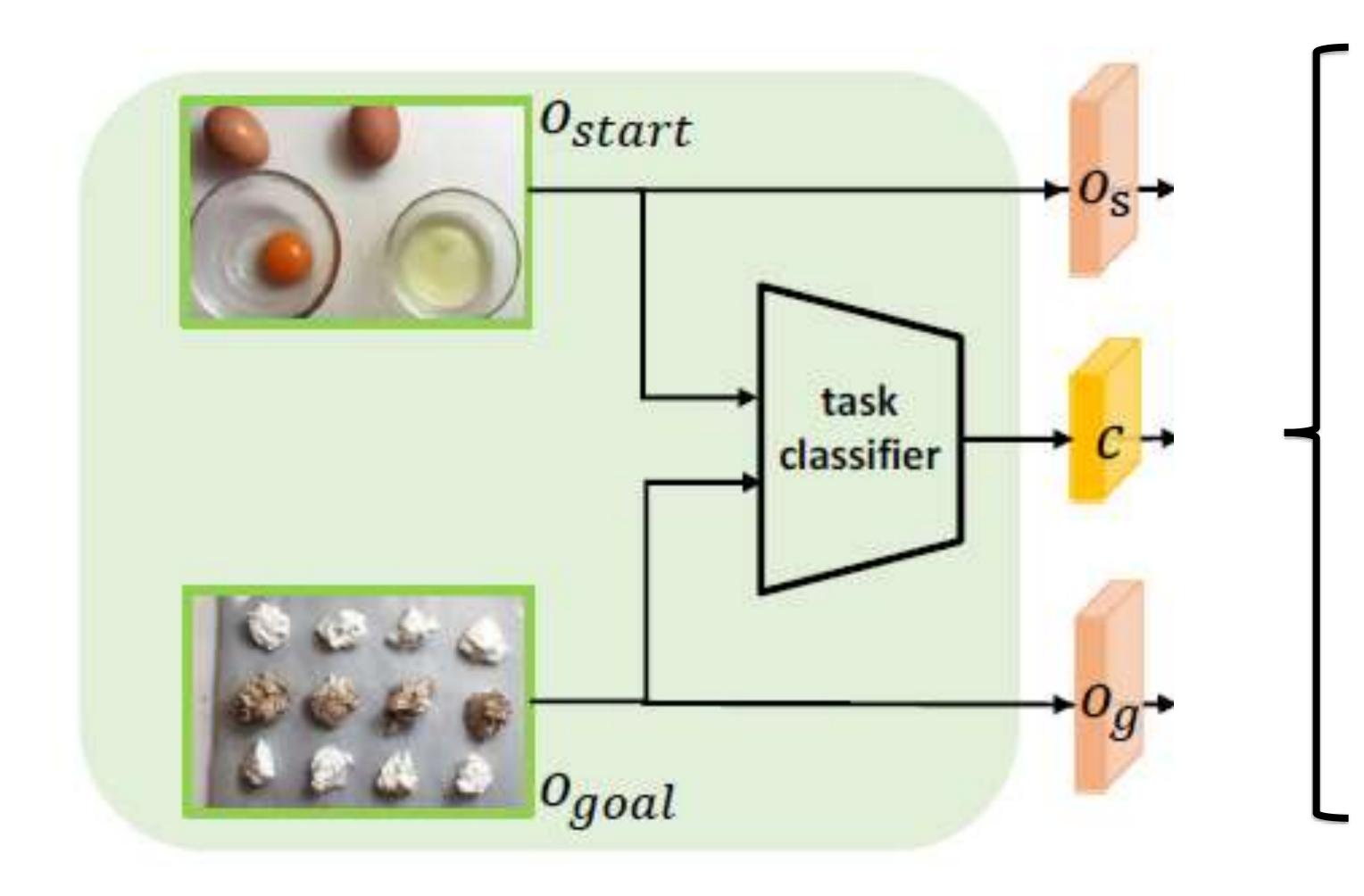
> Conditional action sequence input + Condition projection during learning + Diffusion.





Method

Given the start and goal observations, predict which task category the video is about.



Method

Make Jello Shots

Make Irish Coffee

 $\bullet \bullet \bullet$

Build Simple Floating Shelves

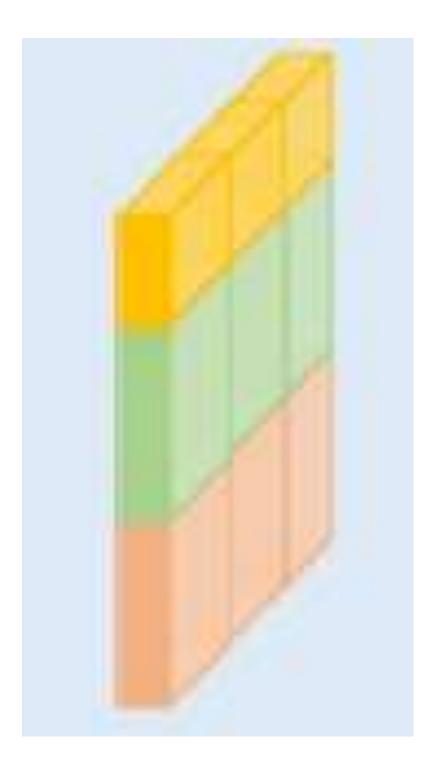
• We implement task classifier with simple MLP models and use the ground truth task labels in instructional videos to supervise the output c.

Construct conditional action sequence input by concatenate observations, actions(one hot feature) and task class(one hot feature) along the feature dimension. Observations and task class are conditional dimensions.

cC c a_T a_1 an ... O_g Os U

Method

feature dimension

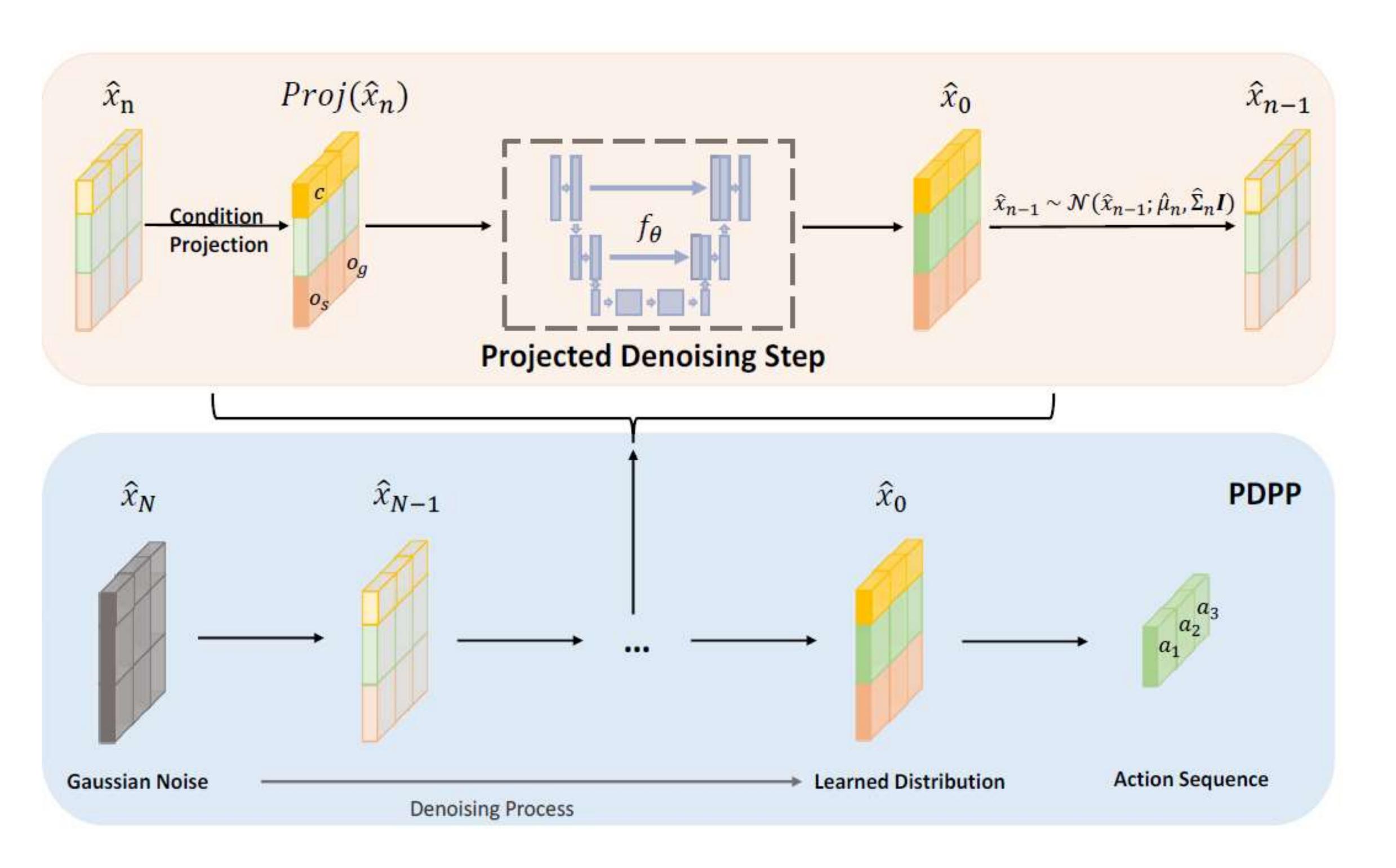


Conditional dimensions

Action dimensions

Observation dimensions

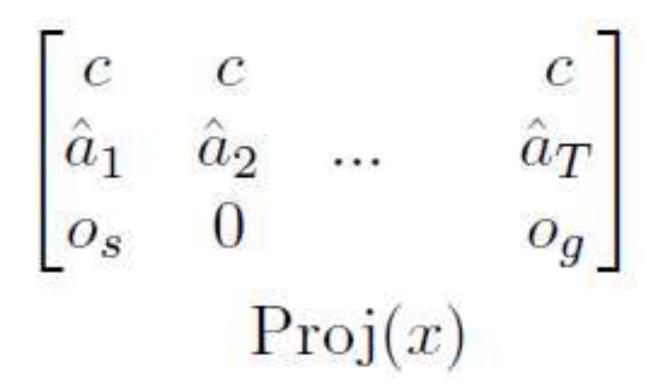
> Apply diffusion process to the conditional action sequence input. Condition projection is added to both the training and sampling process to ensure correct guidance for diffusion.



Method

- We use the basic U-Net as our learnable model for diffusion. Convolution operation along the planning horizon dimension is used for downsample.
- \Box Learning objective for learnable model $f\theta$ is the initial input x₀ rather than the noise added at each forward diffusion step.
- Condition projection is implemented by assigning the initial value to observation and task dimensions.

$$\begin{bmatrix} \hat{c}_1 & \hat{c}_2 & & \hat{c}_T \\ \hat{a}_1 & \hat{a}_2 & \dots & \hat{a}_T \\ \hat{o}_1 & \hat{o}_2 & & \hat{o}_T \end{bmatrix} \rightarrow$$



> Training scheme and sampling process of PDPP.

Algorithm 1 Training

Input Initial input x_0 , total diffusion steps number N, model f_{θ} , $\{\overline{\alpha}_n\}_{n=1}^N$, weight matrix w 1: repeat $n \sim Uniform(\{1, ..., N\})$ 2: $\epsilon \sim \mathcal{N}(0, I)$ 3: $x_n = \sqrt{\overline{\alpha}_n x_0} + \sqrt{1 - \overline{\alpha}_n \epsilon}$ 4:

- $\hat{x}_0 = f_\theta(Proj(x_n), n)$ 5:
- 6: Take gradient descent step on
- $\nabla_{\theta} || (x_0 Proj(\hat{x}_0)) * w ||^2$ 7:

8: until converged

• Weight matrix w is used to assign a bigger weight to a₁ and a_T, since they are actions the most related to the input observations.

Method

Algorithm 2 Inference

Input total diffusion steps number N, model f_{θ} , $\{\overline{\alpha}_n\}_{n=1}^N$, $\{\beta_n\}_{n=1}^N$ 1: $\hat{x}_N \sim \mathcal{N}(0, I)$ 2: for n = N, ..., 1 do $\hat{x}_0 = f_\theta(Proj(\hat{x}_n), n)$ 3: if n > 1 then 4: $\hat{\mu}_n = \frac{\sqrt{\overline{\alpha}_{n-1}\beta_n}}{1-\overline{\alpha}_n} \hat{x}_0 + \frac{\sqrt{\alpha_n}(1-\overline{\alpha}_{n-1})}{1-\overline{\alpha}_n} \hat{x}_n$ 5: $\hat{\Sigma}_n = \frac{1 - \overline{\alpha}_{n-1}}{1 - \overline{\alpha}_n} \cdot \beta_n$ 6: $\hat{x}_{n-1} \sim \mathcal{N}(\hat{x}_{n-1}; \hat{\mu}_n, \hat{\Sigma}_n \mathbf{I})$ 7: end if 8: 9: end for 10: return \hat{x}_0

Experiments

\succ Evaluation results on CrossTask for procudure planning with prediction horizon T = 3, 4.

			T = 3			T = 4	
Models	Supervision	SR↑	mAcc [↑]	mIoU↑	SR↑	mAcc^	mIoU↑
Random	5	< 0.01	0.94	1.66	< 0.01	0.83	1.66
Retrieval-Based	2	8.05	23.30	32.06	3.95	22.22	36.97
WLTDO [10]	-	1.87	21.64	31.70	0.77	17.92	26.43
UAAA [11]	77	2.15	20.21	30.87	0.98	19.86	27.09
UPN [29]	V	2.89	24.39	31.56	1.19	21.59	27.85
DDN [4]	V	12.18	31.29	47.48	5.97	27.10	48.46
Ext-GAILw/o Aug. [2]	V	18.01	43.86	57.16	-	-	-
Ext-GAIL [2]	V	21.27	49.46	61.70	16.41	43.05	60.93
P ³ IV [36]	L	23.34	49.96	73.89	13.40	44.16	70.01
Ours _{Base}	С	26.47	55.35	58.95	15.40	49.42	56.99
Ours _{How}	С	37.20	64.67	66.57	21.48	57.82	65.13

> Evaluation results on CrossTask for procudure planning with longer planning horizons.

Experiments

	T = 3	T = 4	T = 5	T = 6
Models	SR↑	SR↑	SR↑	SR↑
Retrieval-Based	8.05	3.95	2.40	1.10
DDN [4]	12.18	5.97	3.10	1.20
P ³ IV [36]	23.34	13.40	7.21	4.40
Ours _{Base}	26.47	15.40	9.37	6.76
Ours _{How}	37.20	21.48	13.58	8.47

	Batch size	T = 3	T=4	T=5	T=6
0	1	58.95	56.99	56.32	57.51
	32	68.03	67.14	67.10	70.48
Ours _{Base}	64	71.46	69.64	67.39	69.31
	128	71.01	67.26	64.53	63.19
	1	66.57	65.13	65.32	65.38
Our	32	75.21	77.07	78.56	78.59
Ours _{How}	64	79.74	81.74	81.73	80.88
	128	80.50	82.32	81.41	78.64

Evaluation results of mIoU with different batch size on CrossTask.

\succ Evaluation results on NIV and COIN for procudure planning with prediction horizon T = 3, 4.

Experiments

			NIV				COIN	
Horizon	Models	Sup.	SR↑	mAcc [↑]	mIoU↑	SR↑	mAcc [↑]	mIoU↑
	Random		2.21	4.07	6.09	< 0.01	< 0.01	2.47
	Retrieval	-		×	-	4.38	17.40	32.06
T 2	DDN [4]	V	18.41	32.54	56.56	13.9	20.19	64.78
T = 3	Ext-GAIL [2]	V	22.11	42.20	65.93		1121	
	P ³ IV [36]	L	24.68	49.01	74.29	15.4	21.67	76.31
	Ours	C	31.25	49.26	57.92	21.33	45.62	51.82
	Random	5 7 8	1.12	2.73	5.84	< 0.01	< 0.01	2.32
	Retrieval			22	2	2.71	14.29	36.97
T	DDN [4]	V	15.97	27.09	53.84	11.13	17.71	68.06
T = 4	Ext-GAIL [2]	V	19.91	36.31	53.84	-		
	P ³ IV [36]	L	20.14	38.36	67.29	11.32	18.85	70.53
	Ours	C	26.72	48.92	59.04	14.41	44.10	51.39

> Ablation study on the role of task supervision.

Experiments

	Detect		w. task su	p.	V	v.o. task su	ıp.
	Dataset	SR↑	mAcc^	mIoU↑	SR↑	mAcc [↑]	mIoU↑
	CrossTask _{Base}	26.47	55.35	58.95	22.82	51.56	54.36
T = 3	CrossTask _{How}	37.20	64.67	66.57	35.69	63.91	66.04
I = 3	NIV	31.25	49.26	57.92	29.41	46.20	56.42
	COIN	21.33	45.62	51.82	16.46	36.43	43.50
	CrossTask _{Base}	15.40	49.42	56.99	14.91	49.55	56.28
T - I	CrossTask _{How}	21.48	57.82	65.13	20.52	57.47	64.39
T = 4	NIV	26.72	48.92	59.04	26.72	46.55	59.50
	COIN	14.41	44.10	51.39	12.32	35.48	42.75
T = 5	CrossTask _{Base}	9.37	45.93	56.32	8.95	45.77	56.34
I = J	CrossTask _{How}	13.58	54.05	65.32	12.80	53.44	64.01
T = 6	CrossTask _{Base}	6.76	43.61	57.51	6.06	44.15	57.07
T = 6	CrossTask _{How}	8.47	50.14	65.38	8.15	50.45	64.13

Evaluating probabilistic modeling.

- **D** Baselines:
 - \bullet

Metric↓	Model	T = 3	T=4	T=5	T= 6	
141	Deterministic	3.57	4.29	4.70	5.12	
NLL	Noise	3.58	4.04	4.45	4.79	
	Ours	3.61	3.85	3.77	4.06	
	Deterministic	2.99	3.40	3.54	3.82	
KL-Div	Noise	3.00	3.15	3.30	3.49	
	Ours	3.03	2.96	2.62	2.76	

Evaluation results of the plan distributions metrics

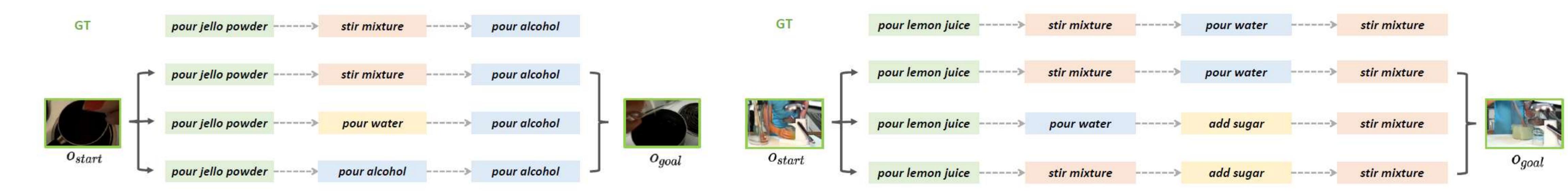
Experiments

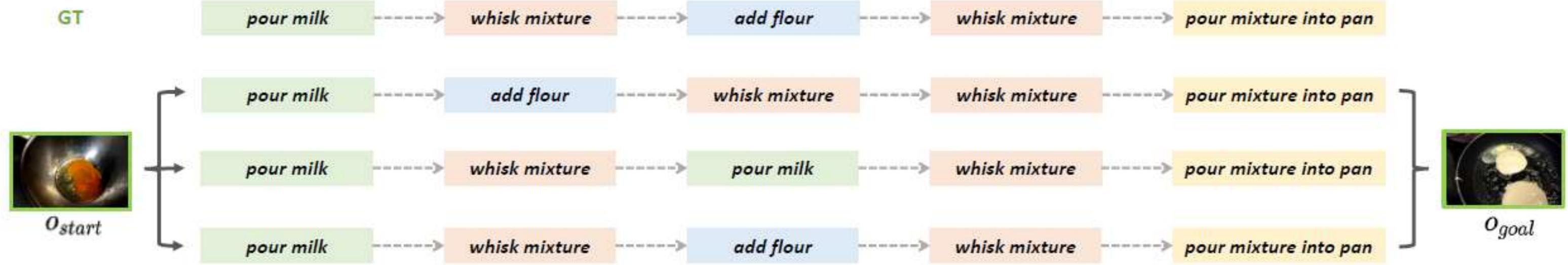
Noise: remove the diffusion process in PDPP and samples from a random noise with the given observations and task class condition in one shot **Deterministic**: setting the start distribution as zero thus the model directly predicts a certain result with the given conditions

Metric [↑]	Model	T = 3	T=4	T=5	T =6	
	Deterministic	39.03	21.17	12.59	7.47	
SR	Noise	34.92	18.99	12.04	7.82	
	Ours	37.20	21.48	13.58	8.47	
	Deterministic	55.60	45.65	35.47	25.24	
ModePrec	Noise	51.04	43.90	34.35	24.51	
	Ours	53.14	44.55	36.30	25.61	
	Deterministic	34.13	18.35	11.20	6.75	
ModeRec	Noise	39.42	25.56	15.67	11.04	
	Ours	36.49	31.10	29.45	22.68	

Evaluation results of diversity and accuracy metrics.

Visualizations for uncertainty modeling.





Experiments

Conclusion

training scheme.

- intermediate steps at one shot.
- different prediction time horizons.
- and reasonable plans.

Conclusion

> In this work, we cast the procedure planning as a conditional distribution-fitting problem and model the joint distribution of the whole intermediate action sequence as our learning objective, which can be learned with a simple

> We introduce an efficient approach for training the procedure planner, which removes the supervision of visual or language features and relies on task supervision instead.

We propose a novel projected diffusion model (PDPP) to learn the distribution of action sequences and produce all

> We evaluate our PDPP on three instructional videos datasets and achieve the state-of-the-art performance across

> Our PDPP model has an excellent ability to model the uncertainty in procedure planning and can produce both diverse

Thank you!

Code Link: <u>https://github.com/MCG-NJU/PDPP</u>

Contact me: wwanghanlino6@gmail.com

