

Light Source Separation and Intrinsic Image Decomposition under AC Illumination

TUE-PM-153

Yusaku YOSHIDA, Ryo KAWAHARA, and Takahiro OKABE Kyushu Institute of Technology

Backgrounds

- Artificial light sources
 - often powered by alternating current (AC)
 - cause flickers in the radiance values of a scene

- Temporal intensity profiles
 - depend not only on the phase of electric grid but also on light sources themselves

captured at 2,500fps & replayed at 25fps

Our Goal

Flickers are useful for extracting rich information on a scene

• Light source separation (LSS) and intrinsic image decomposition (IID) from an image sequence taken under multiple AC light sources

• **IID**

• LSS

temporal intensity profiles

=> properties of scene & light sources

diffuse and specular shading images

Outline of Our Proposed Method

• LSS followed by IID

• Our LLS

- input: image sequence, output: basis images and intensity profiles

- Our IID
 - input: basis images

- output: light source colors, diffuse reflectance, diffuse and specular shadings

Difficulties: Ambiguities in LSS and IID

• LSS

superposition principle:
linear combination of basis images

- blind LSS via matrix factorization

I = BA

I: input image sequence

B: basis images

- A: temporal intensity profiles
- ambiguity between basis images and intensity profiles
- invariant to unknown matrix X

 $I = BXX^{-1}A$

• IID

- IID assuming diffuse reflection model $\boldsymbol{b}_{pn} = d_{pn} \begin{pmatrix} r_{p1} & 0 & 0 \\ 0 & r_{p2} & 0 \\ 0 & 0 & r_{p3} \end{pmatrix} \begin{pmatrix} l_{n1} \\ l_{n2} \\ l_{n3} \end{pmatrix}$ $= d_{pn} \boldsymbol{R}_p \boldsymbol{l}_n.$ \boldsymbol{b}_{pn} : pixel values of basis image d_{pn} : diffuse intensity \boldsymbol{r}_p : diffuse reflectance \boldsymbol{l}_n : light source color
 - ambiguity between diffuse reflectance and light source colors
 - invariant to unknown matrix Y

$$\boldsymbol{b}_{pn} = d_{pn} \boldsymbol{R}_p \boldsymbol{Y} \boldsymbol{Y}^{-1} \boldsymbol{l}_n$$

Key Ideas: Resolving Ambiguities in LSS and IID

• LSS

– unknown X causes non-uniform
light source color in basis image

$$\boldsymbol{b}_{pn}^{(e)} = \begin{pmatrix} r_{p1} & 0 & 0\\ 0 & r_{p2} & 0\\ 0 & 0 & r_{p3} \end{pmatrix} \begin{pmatrix} N\\ \sum_{m=1}^{N} d_{pm} \boldsymbol{l}_m \boldsymbol{x}_{mn} \end{pmatrix}$$

light source color

 uniform light source color in each basis image resolves the ambiguity
combination with diffuse IID • IID

diffuse colors are invariant but
specular colors depend on unknown Y

$$\boldsymbol{b}_{pn} = d_{pn} \boldsymbol{R}_p \boldsymbol{Y} \boldsymbol{Y}^{-1} \boldsymbol{l}_n + s_{pn} \boldsymbol{Y}^{-1} \boldsymbol{l}_n.$$

specular reflection component

- specular reflection components resolve the ambiguity: specular color = light source color
- => IID assuming the dichromatic reflection model

Experimental Results: LSS

Experimental Results: IID

• Synthetic images: Figure 2 & Table 2

diffuse reflectance		
diffuse & specular intensities 1	<u>é</u> 4	
diffuse & specular intensities 2	· ·	
	(d)	(e)
	G. T.	Diffuse IID

light source colors

light	ground truth	diffuse IID	our IID
(i) 1	(0.42, 0.35, 0.23)	(0.33, 0.33, 0.33)	(0.42, 0.37, 0.21)
2	(0.38, 0.19, 0.43)	(0.28, 0.16, 0.56)	(0.39, 0.20, 0.41)

• Real images: Figure 4 & Table 3

の設む	5
	1
	Ç
(e)	
Diffuse IID	

Our IID

light source colors

diffuse reflectance

diffuse & specular intensities 1

diffuse & specular intensities 2

(f)

Our IID

light	ground truth	diffuse IID	our IID
(A) 1	(0.56, 0.30, 0.14)	(0.33, 0.33, 0.33)	(0.58, 0.29, 0.13)
2	(0.24, 0.36, 0.40)	(0.16, 0.39, 0.45)	(0.24, 0.33, 0.44)

Applications: Auto White Balancing

- Difficulties
 - non-uniform light source colors due to multiple light sources
- Key ideas
 - combining white balanced basis images

Main Contributions

- Tackle a novel problem
 - we tackle a novel problem of the IID under AC illumination, and show that flickers due to AC illumination are useful for IID as well as LSS
- Reveal and resolve the ambiguities in LSS and IID
 - we reveal the ambiguities in the blind LSS and diffuse IID under AC illumination, and show why and how those ambiguities can be resolved via physics-based approach
- Easy-to-implement but effective method
 - our method does not require a self-built camera and the dataset of various light sources, and is effective for application to auto white balancing