

Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation Mattia Litrico Alessio Del Bue Pietro Morerio Italian Institute of Technology (IIT) **TUE-PM-336**

Source-free Unsupervised Domain Adaptation

JUNE 18-22, 2023

NCOUVER, CANADA

Overview

Pseudo-label Refinement via Nearest-neighbours Knowledge Aggregation

Pseudo-labels are refined by aggregating knowledge from neighbours samples using a voting strategy on their predictions.

Pseudo-label Refinement via Nearest-neighbours Knowledge Aggregation

Loss Reweighting with Pseudo-labels Uncertainty Estimation

The entropy of the averaged neighbours' predictions measures the uncertainty of the pseudo-label and the corresponding weight in the classification loss.

[1] Chen et al., "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020[2] Chen et al., "Contrastive Test-Time Adaptation", CVPR 2022

Temporal Queue for Negative Pairs Exclusion

Joint training with self-learning

$$L_t = \gamma_1 L_t^{cls} + \gamma_2 L_t^{ctr} + \gamma_3 L_t^{div}$$

Negative learning classification loss.

$$L_t^{cls} = -\mathbb{E}_{x_t \in \mathcal{X}_t} \left[w_{x_t} \cdot \sum_{c=1}^C \tilde{y}^c \log\left(1 - p_{sa}^c\right) \right]$$

Contrastive loss.

$$L_t^{ctr} = L_{\text{InfoNCE}} = -\log \frac{\exp(q \cdot k_+/\tau)}{\sum_{j \in \mathcal{N}_q} \exp(q \cdot k_j/\tau)}$$
$$\mathcal{N}_q = \{j | \hat{y}_j^i \neq \hat{y}^i, \ \forall j \in \{1, ..., N\}, \forall i \in \{1, ..., T\}\}$$

Divergence loss.

$$L_t^{div} = \mathbb{E}_{x_t \in \mathcal{X}_t} \sum_{c=1}^C \bar{p}_q^c \log \bar{p}_q^c, \quad \bar{p}_q = \mathbb{E}_{x_t \in \mathcal{X}_t} \sigma(g_t(t_{sa}(x_t)))$$

Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation - Mattia Litrico, Alessio Del Bue, Pietro Morerio - CVPR 23

VIS

Results

Method	SF-UDA	plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg.
CDAN [42]	no	85.2	66.9	83.0	50.8	84.2	74.9	88.1	74.5	83.4	76.0	81.9	38.0	73.9
CDAN+BSP [9]	no	92.4	61.0	81.0	57.5	89.0	80.6	90.1	77.0	84.2	77.9	82.1	38.4	75.9
SWD [30]	no	90.8	82.5	81.7	70.5	91.7	69.5	86.3	77.5	87.4	63.6	85.6	29.2	76.4
MCC [25]	no	88.7	80.3	80.5	71.5	90.1	93.2	85.0	71.6	89.4	73.8	85.0	36.9	78.8
CAN [26]	no	97.0	87.2	82.5	74.3	97.8	96.2	90.8	80.7	96.6	96.3	87.5	59.9	87.2
DivideMix [35]	yes	95.0	82.4	85.3	78.1	94.2	90.3	90.1	81.3	92.5	91.9	91.2	60.8	86.1
MA [36]	yes	94.8	73.4	68.8	74.8	93.1	95.4	88.6	84.7	89.1	84.7	83.5	48.1	81.6
BAIT [37]	yes	93.7	83.2	84.5	65.0	92.9	95.4	88.1	80.8	90.0	89.0	84.0	45.3	82.7
SHOT [38]	yes	95.3	87.5	78.7	55.6	94.1	94.2	81.4	80.0	91.8	90.7	86.5	59.8	83.0
DIPE [64]	yes	95.2	87.6	78.8	55.9	93.9	95.0	84.1	81.7	92.1	88.9	85.4	58.0	83.1
NEL [1]	yes	94.5	60.8	92.3	87.3	87.3	93.2	87.6	91.1	56.9	83.4	93.7	86.6	84.2
A^2 Net [67]	yes	94.0	87.8	85.6	66.8	93.7	95.1	85.8	81.2	91.6	88.2	86.5	56.0	84.3
G-SFDA [68]	yes	96.1	88.3	85.5	74.1	97.1	95.4	89.5	79.4	95.4	92.9	89.1	42.6	85.4
SFDA-DE [11]	yes	95.3	91.2	77.5	72.1	95.7	97.8	85.5	86.1	95.5	93.0	86.3	61.6	86.5
AdaContrast [5]	yes	97.0	84.7	84.0	77.3	96.7	93.8	91.9	84.8	94.3	93.1	94.1	49.7	86.8
CoWA [32]	yes	96.8	90.3	87.0	67.4	97.2	96.6	90.4	87.3	95.6	95.5	91.8	62.5	88.2
Ours	yes	97.3	96.2	90.5	91.8	90.0	94.2	87.4	87.7	97.0	84.3	93.0	81.0	90.0

Ablation studies

-					
Pseudo-label refinement	Contrastive regularisation	Negative learning	Temporal-queue exclusion	Uncertainty reweighting	Avg. Acc.
1	×	×	×	×	52.3
\checkmark	\checkmark	×	×	×	78.9
1	1	1	×	×	82.1
1	1	\checkmark	1	×	85.8
1	\checkmark	\checkmark	\checkmark	1	90.0

Ablation studies of sub-components.

Method	Acc.
Ours w/ hard entropy margin	85.9
Ours w/ linear weighting	85.1
Ours w/ positive Ours w/ positive+negative	83.0 85.2
Ours	90.0
Additional analysis.	

Refining Pseudo-labels during the adaptation

Our method guides the pseudo-labels refinement and mitigates the effects of noisy samples, resulting in progressively improving the pseudo-labels accuracy.

Chen et al., "Contrastive Test-Time Adaptation", CVPR 2022

https://github.com/MattiaLitrico/Guiding-Pseudo-labels-with-Uncertainty-Estimation-for-Source-free-Unsupervised-Domain-Adaptation

