

GKEAL: Gaussian Kernel Embedded Analytic Learning for Few-shot Class Incremental Task

Huiping Zhuang¹*, Zhenyu Weng², Run He¹, Zhiping Lin² and Ziqian Zeng¹

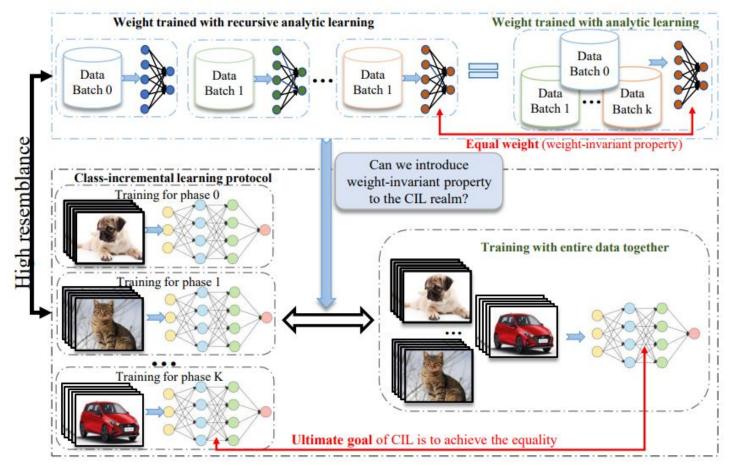
¹Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, China, ²School of Electrical and Electronic Engineering, Nanyang Technological University.

Class-incremental learning (CIL) can continuously absorbs new category knowledge phase-by-phase while faces the challenge of catastrophic forgetting that renders the networks losing grasp of the learned knowledge when accepting new tasks.

The few-shot setting in FSCIL further impose the data insufficiency constraint on data availability that each category/task is given only a few training samples.

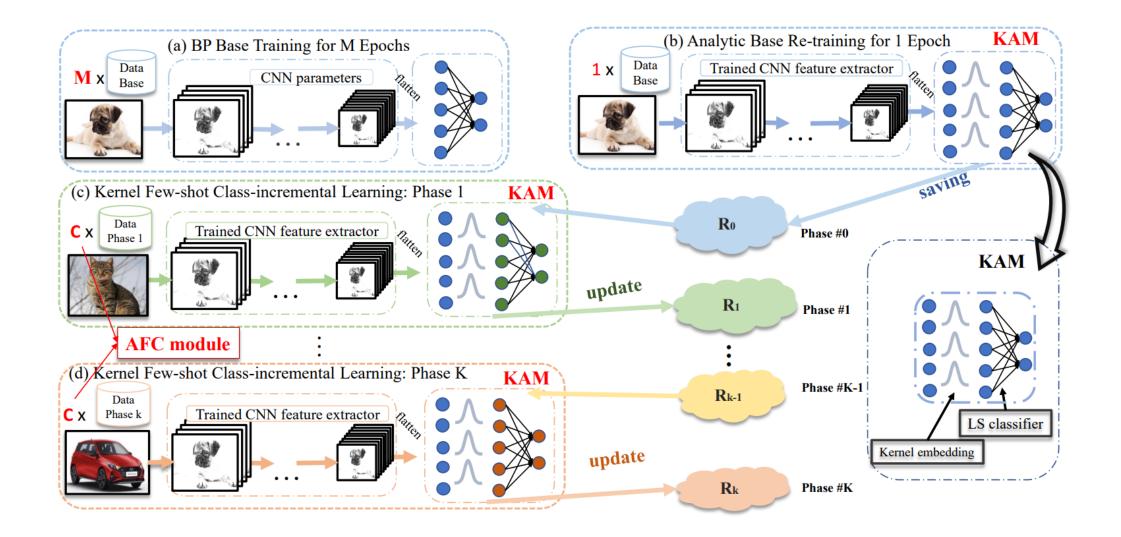
Analytic learning allows the training to be implemented in a recursive manner where training data are scattered into multiple batches and the weights trained recursively are identical to those trained jointly with entire dataset.

This weight-invariant property in analytic learning highly resemble the incremental learning paradigm and its objective of avoiding forgetting. Can we implement the resemblance?



The Proposed Method

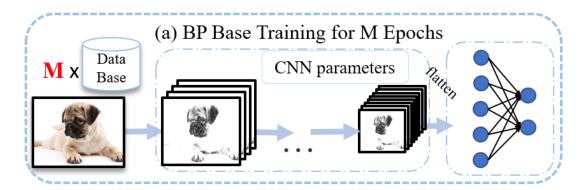
Two phases: **Base training** and **few-shot class incremental learning**.

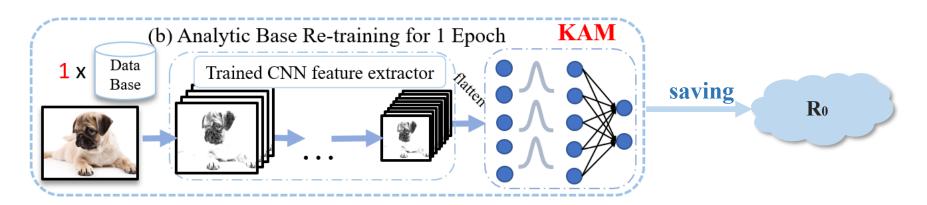


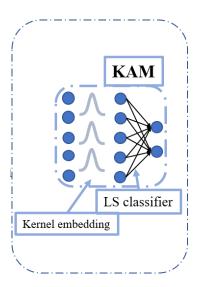
The Proposed Method

BP Base training for training the **backbone**. Then the backbone is frozen.

Analytic base retraining for initialize the LS classifier in KAM.



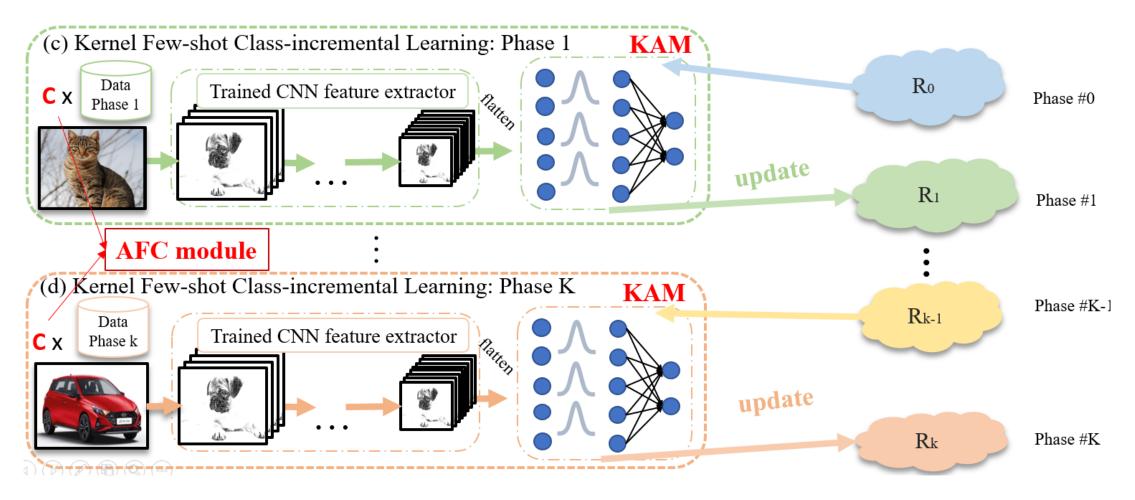




The Proposed Method

Information stored in **R**_i is used to update the LS classifiers.

□AFC module augment features to balance the old-new preference.

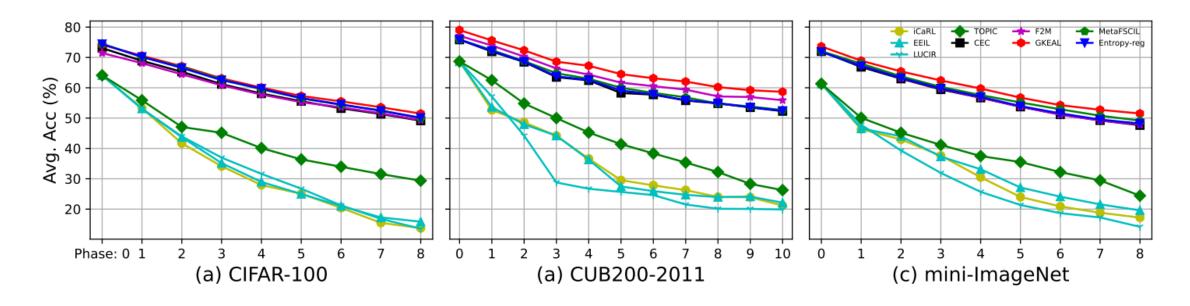


Experiments

□ For validation we conduct FSCIL tasks of classification on the CIFAR-100, CUB-200 and mini-ImageNet datasets.

The setting in CIFAR-100/mini-ImageNet is 5-way 5-shot (total 8 phases) and 10-way 5-shot (total 10 phases) in CUB-200.

□In the comparison with State-of-the-arts, we can find that our method outperform the other methods.



Ablation study on GKE and AFC shows that:

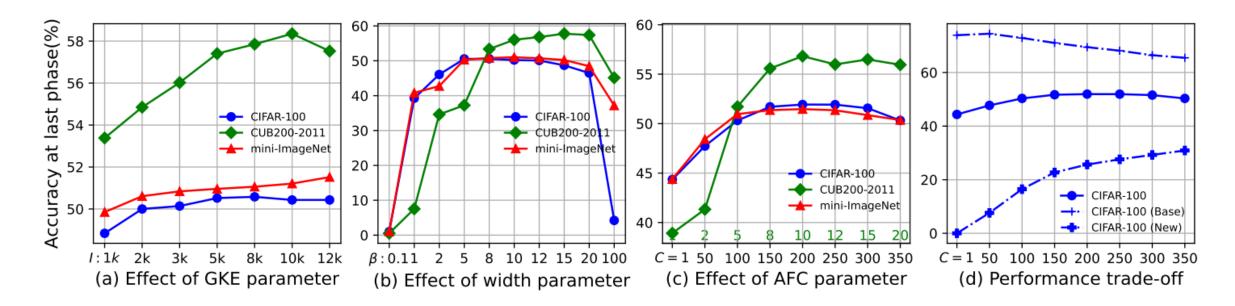
- 1. Lacking GKE results in catastrophic forgetting;
- 2. AFC with GKE can improve the performance.

Table 4. Ablation study of the GKE (w: I = 5k, w/o: removed) and AFC (w: C = 200, w/o: C = 1) modules.

GKE	AFC	Phase: 0	1	2	3	4	5	6	7	8
×	×	13.20	11.99	11.29	10.01	9.39	9.22	8.81	8.10	7.99
×	\checkmark	12.56	10.80	10.29	9.81	9.36	8.60	8.00	7.89	7.22
\checkmark	×	74.80	68.98	64.11	59.35	55.78	52.28	49.08	47.02	43.79
\checkmark	\checkmark	74.35	70.32	66.21	62.37	60.01	56.98	55.12	53.39	51.21

Analyze the parameters including GKE parameter, width parameter, AFC parameter:

- 1. GKEAL hungers for a larger GKE parameter;
- 2. Exceeding bound of width parameter will cause performance drop;
- 3. AFC balance the preference of base and new data.



GKEAL handles the FSCIL problem with the kernel embedded module.

□ AFC is another contribution to balance the base-new knowledge.

GKEAL shows outstanding performance compared with SOTA in various experiments.