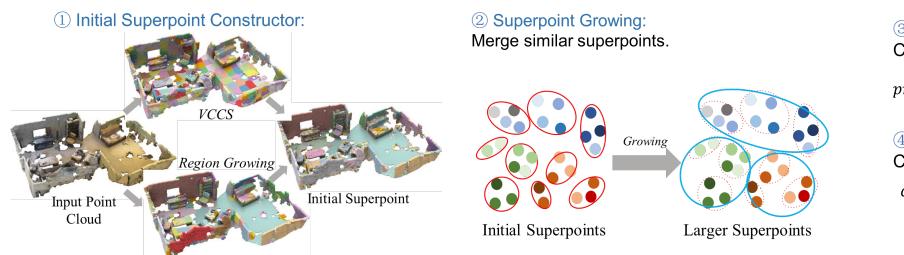


GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds

Zihui Zhang, Bo Yang, Bing Wang, Bo Li vLAR Group, The Hong Kong Polytechnic University Paper Tag: THU-AM-109

Brief Introduction

Motivations: Annotation is costly



Initial Superpoints

Progressively Growing Superpoints

Prediction by GrowSP Ground Truth

Superpoint Constructor
Superpoint Growing
Semantic Primitives

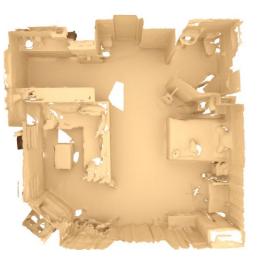
③ Semantic Primitives: Cluster superpoints to primitives

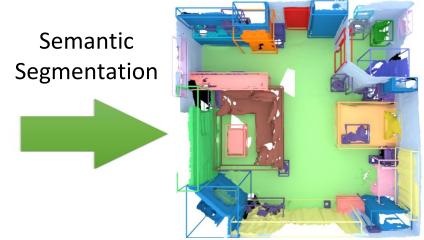
primitives $\xleftarrow{\text{Kmeans}} (f_1^1 \cdots f_m^H)$

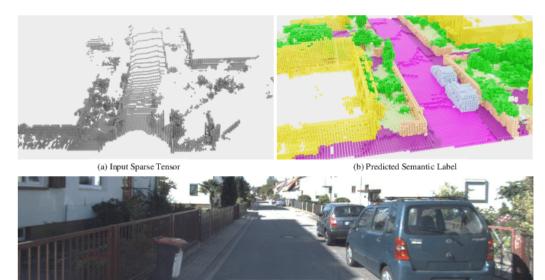
(4) Semantic Classes:

Cluster primitives to categories categories $\leftarrow means$ $(pri_1 \cdots pri_S)$

Overall Pipeline:





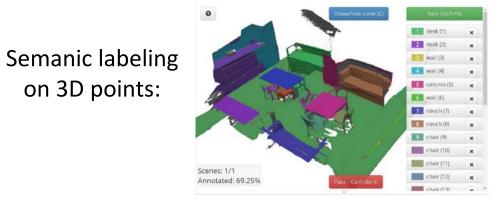

Background

Assign semantic labels to each point

Autonomous Driving

3D scene semantic segmentation is crucial for practical application

Motivation


• Fully supervised :

ScanNet Benchmark												
4												
Method	Info	avg iou	bathtub	bed	bookshelf	cabinet	chair	counter	curtain			
		•	\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown	∇			
Mix3D	P	0.781 1	0.964 1	0.855 1	0.843 10	0.781 1	0.858 7	0.575 <mark>2</mark>	0.831 17			
Alexey Nekrasov, Jonas Schult, 0	Or Litany,	Bastian Leibe, F	rancis Engelr	nann: Mix3D:	Out-of-Context D	ata Augmenta	tion for 3D So	enes. 3DV 20	21 (Oral)			
OccuSeg+Semantic		0.764 2	0.758 42	0.796 16	0.839 11	0.746 8	0.907 1	0.562 3	0.850 12			
O-CNN	Ρ	0.762 3	0.924 2	0.823 4	0.844 9	0.770 2	0.852 9	0.577 1	0.847 13			
Peng-Shuai Wang, Yang Liu, Yu-	Xiao Guo,	Chun-Yu Sun,	Xin Tong: O-C	NN: Octree-b	ased Convolution	al Neural Net	works for 3D	Shape Analysi	s. SIGGRAPH 2			
DMF-Net		0.752 4	0.906 4	0.793 19	0.802 25	0.689 22	0.825 25	0.556 4	0.867 8			
PointTransformerV2		0.752 4	0.742 49	0.809 11	0.872 1	0.758 4	0.860 6	0.552 5	0.891 5			

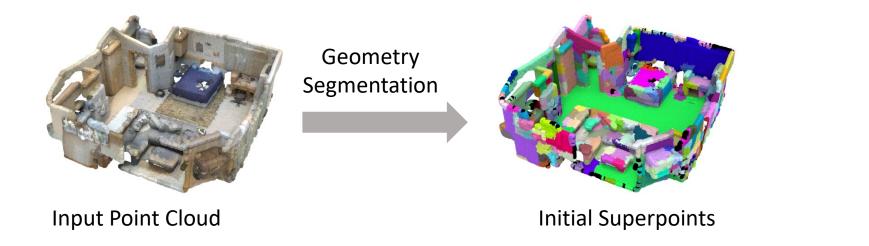
Weakly supervised:

ScanNet Da	ata Ef	ficient				Lin	nited Ann	otations -	Limite	d Reco
Trained points per	r scene : 2	0 points 🗸								
∢ Method	Info		h a th tu ch	had	bookshelf	aabinat	ahain	counter	telin	a la s
method	Info	avg iou	bathtub ⊽	bed v	booksneli ⊽	capinet ⊽	chair v	v	curtain	de
ActiveST		0.703 1	0.977 1	0.776 2	0.657 4	0.707 1	0.874 1	0.541 1	0.744 1	0.60
Gengxin Liu, Oliver van Kaic	k, Hui Huang,	Ruizhen Hu: Ac	tive Self-Traini	ng for Weakl	y Supervised 3D \$	Scene Semant	ic Segmenta	tion.		
WeakLab-3D- Net(WS3D)	Р	0.662 2	0.812 3	0.762 3	0.742 1	0.635 2	0.828 5	0.474 2	0.736 2	0.58
DE-3DLearner LA		0.639 3	0.839 2	0.723 5	0.681 2	0.629 3	0.839 4	0.424 3	0.728 3	0.53

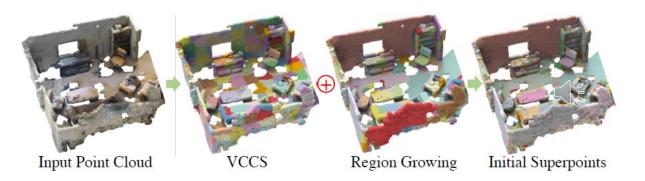
Manually annotating real-word 3D point cloud is costly

RGB image

Semantics in 2D



Depth Semantics in 3D Semanic labeling on RGBD **GrowSP:**



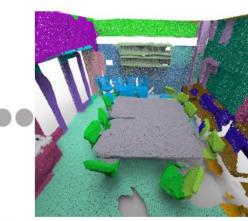
• Semantic Significance of Point Regions vs Individual Points

Superpoints Constructors: Region Growing: normal similarity and connectivity

VCCS:
$$D = \sqrt{w_c D_c^2 + \frac{w_s D_s}{3R_{seed}^2} + w_n D_n}$$

GrowSP:

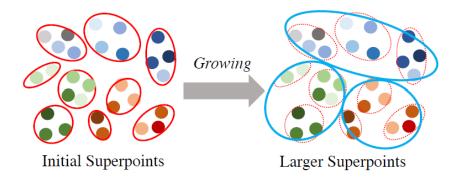
J,


• Growing Superpoints to contain more semantics:

Input Point Cloud

Initial Superpoints

Progressively Growing Superpoints



Prediction by GrowSP

In feature space:

$$ilde{oldsymbol{f}}_{m^0}^h = rac{1}{Q}\sum_{q=1}^Q oldsymbol{f}_q^h,$$

$$\{ \tilde{\boldsymbol{p}}_1^h \cdots \tilde{\boldsymbol{p}}_{m^1}^h \cdots \tilde{\boldsymbol{p}}_{M^1}^h \} \xleftarrow{\text{Kmeans}} \{ \tilde{\boldsymbol{f}}_1^h \cdots \tilde{\boldsymbol{f}}_{m^0}^h \cdots \tilde{\boldsymbol{f}}_{M^0}^h \}$$

- Semantic Primitives(sub-class) and Auxiliary features:
 - 1). Cluster superpoints into semantic categories is aggressive.
 - We choose to constantly group superpoints into semantic primitives rather than semantic categories.

$$S \text{ primitives} \xleftarrow{\text{Kmeans}} \left(\{ \hat{\boldsymbol{f}}_1^1 \cdots \hat{\boldsymbol{f}}_{m^0}^1 \cdots \} \cdots \{ \hat{\boldsymbol{f}}_1^H \cdots \hat{\boldsymbol{f}}_{m^0}^H \cdots \} \right)$$

2). Auxiliary features.

• The network output features are semantically meaningless, especially at the early training stages.

For each superpoints having k points:

- Compute k normal vectors and their cosine distance of any two points.
- Count the distribution of cosine distance to form a histogram within the range [-1, 1]

GrowSP:

- 1. Get per-point features.
- 2. Get superpoint-wise features.
- 3. Do clustering on superpoint-wise features.
- 4. Training backbone by pseudo labels.

Experiments:

• Compare with other unsup methods:

S3DIS:

		OA(%)	mAcc(%)	mIoU(%)
	RandCNN	23.1	18.4	9.3
	van Kmeans	20.0	21.5	8.8
	van Kmeans-S	20.0	22.3	8.8
Unsupervised	van Kmeans-PFH	23.9	24.7	10.9
Methods	van Kmeans-S-PFH	23.4	20.8	9.5
	IIC [24]	32.8	14.7	8.5
	IIC-S [24]	29.4	15.1	7.7
	IIC-PFH [24]	29.5	13.2	6.7
	IIC-S-PFH [24]	26.3	13.6	7.2
	PICIE [7]	46.4	28.1	17.8
	PICIE-S [7]	50.7	30.8	21.6
	PICIE-PFH [7]	55.0	38.8	26.6
	PICIE-S-PFH [7]	49.1	40.5	26.7
	GrowSP (Ours)	76.0	59.4	44.6

ScanNet:

		OA(%)	mAcc(%)	mIoU(%)
	RandCNN	11.9±0.4	8.4±0.1	3.2±0
	van Kmeans	10.1 ± 0.1	10.0 ± 0.1	3.4 ± 0
	van Kmeans-S	10.2 ± 0.1	$9.8 {\pm} 0.3$	$3.4{\pm}0.1$
Unsupervised	van Kmeans-PFH	10.4 ± 0.2	10.3 ± 0.7	3.5 ± 0.2
Methods	van Kmeans-S-PFH	12.2 ± 0.6	$9.3 {\pm} 0.5$	3.6 ± 0.1
	IIC [24]	27.7±2.7	6.1 ± 1.2	$2.9{\pm}0.8$
	IIC-S [24]	18.3 ± 2.6	6.7 ± 0.6	$3.4{\pm}0.1$
	IIC-PFH [24]	$25.4{\pm}0.1$	6.3 ± 0	3.4 ± 0
	IIC-S-PFH [24]	18.9 ± 0.3	6.3 ± 0.2	$3.0{\pm}0.1$
	PICIE [7]	$20.4{\pm}0.5$	16.5 ± 0.3	7.6 ± 0
	PICIE-S [7]	35.6 ± 1.1	13.7 ± 1.5	8.1 ± 0.5
	PICIE-PFH [7]	23.1±1.4	14.0 ± 0.1	8.1 ± 0.3
	PICIE-S-PFH [7]	$23.6 {\pm} 0.4$	15.1 ± 0.6	7.4 ± 0.2
	GrowSP (Ours)	57.3 ±2.3	44.2 ±3.1	25.4 ±2.3

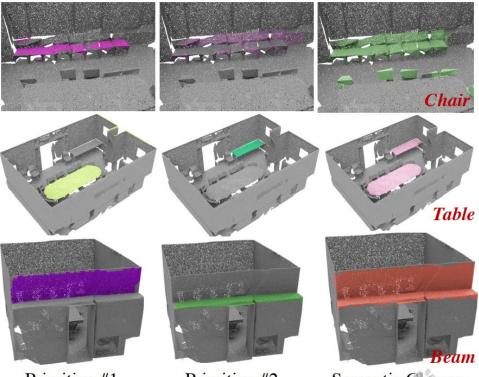
SemanticKITTI:

	OA(%)	mAcc(%)	mIoU(%)	car.	bike.	mbike.	truck.	vehicle.	person.	cyclist.	mcyclist.	road.	parking.	sidewalk.	other-gr.	building.	fence.	veget.	trunk.	terrain.	pole.	sign.
RandCNN	25.4±3.3	$6.0{\pm}0.2$	3.3±0.1	2.5 ± 0.4	0 ± 0	0 ± 0	0 ± 0	$0.2{\pm}0.1$	0±0	0±0	0 ± 0	8.5±2.1	$0.8{\pm}0.5$	4.9±1.8	0.3±0.3	6.2±1.3	1.3±0.3	29.0±3.1	$1.0{\pm}0.2$	8.1±1.6	0.4±0.1	0.1±0
van Kmeans	8.1 ± 0	$8.2{\pm}0.1$	2.4 ± 0	5.6 ± 0.2	0.1 ± 0	0.1 ± 0	0.2 ± 0	0.5 ± 0.1	0.1 ± 0	0 ± 0	0 ± 0	12.3 ± 0.1	$1.1{\pm}0.1$	$4.4{\pm}0.1$	0.3 ± 0	5.8 ± 0.2	2.0 ± 0	5.7±0.1	$1.4{\pm}0$	5.0 ± 0.1	0.5±0	0.1 ± 0
van Kmeans-S	10.3 ± 0.3	7.7±0.1	2.6 ± 0	5.6 ± 0.4	0.1 ± 0.1	$0.1{\pm}0.1$	$0.1{\pm}0.1$	0.3 ± 0	0.1 ± 0	0 ± 0	0 ± 0	13.5 ± 0.6	$1.0{\pm}0.4$	5.0 ± 0.2	0.3 ± 0	7.1±0.6	1.5 ± 0.2	7.5 ± 0.7	1.5 ± 0.1	6.0±0.1	3.4±0.1	0.1 ± 0
IIC [23]	26.2 ± 1.5	5.8 ± 0.4	3.1±0.3	1.6 ± 0.9	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0	8.9 ± 2.0	0.1 ± 0.1	2.6 ± 1.8	0 ± 0	7.1±4.2	$0.2{\pm}0.1$	26.5 ± 2.5	0.3 ± 0.4	11.5±1.5	0.1±0.1	0.1 ± 0.1
IIC-S [23]	23.9±1.1	6.1±0.3	$3.2{\pm}0.2$	1.6 ± 0.8	0 ± 0	0 ± 0	0.1 ± 0.1	$0.1{\pm}0.1$	0 ± 0	$0.1{\pm}0.1$	9.7±1.9	0.6 ± 0.5	4.3±2.8	0.1 ± 0.1	8.8±3.2	0.5 ± 0.6	24.3±2.3	0.6 ± 0.5	9.7±2.6	0.3 ± 0.3	0.1 ± 0.1	0 ± 0.1
PICIE [7]	22.3 ± 0.4	14.6 ± 0.3	5.9 ± 0.1	$7.4{\pm}0.2$	0.3 ± 0.2	0 ± 0	0.1 ± 0	0.6 ± 0.1	0.3 ± 0.1	$0.1{\pm}0.1$	0 ± 0	$4.826.5 \pm 0.3$	1.6 ± 0.1	14.8 ± 1.4	0.6 ± 0.3	20.5 ± 0.4	4.8 ± 0.1	16.3 ± 1.0	2.1 ± 0.9	14.2 ± 0.9	$1.4{\pm}0.3$	$0.4{\pm}0.2$
PICIE-S [7]	18.4 ± 0.5	13.2 ± 0.2	5.1 ± 0.1	6.1±1.4	0.1 ± 0	0 ± 0	0.1 ± 0.1	$0.4{\pm}0.1$	0.3 ± 0.1	$0.1{\pm}0.1$	0 ± 0	21.3 ± 1.4	$1.7{\pm}0.1$	12.9 ± 2.3	$0.4{\pm}0.2$	21.2 ± 0.9	2.6 ± 0.3	13.4±0.4	$2.4{\pm}0.3$	11.5±2.9	2.6 ± 0.2	0.4 ± 0
GrowSP(Ours)	38.3 ±1.0	19.7±0.6	13.2 ± 0.1	76.0±0.4	0 ± 0	0.4 ±0.2	0.9±0.7	1.0 ±0.1	0.1 ± 0.2	0.1 ± 0.2	0 ± 0	26.8±3.5	$1.0{\pm}0.4$	13.8 ± 4.5	$0.4{\pm}0.3$	39.2 ±2.1	1.3 ± 0.4	26.7 ± 1.5	25.1 ± 0.7	35.5 ± 1.9	$0.2{\pm}0.1$	2.1±0.1

Experiments:

Cross-datasets(Novel class discovery): •

S3DIS \rightarrow ScanNet:


model trained on $ ightarrow$	Areas 2/3/4/5/6	Areas 1/3/4/5/6	Areas 1/2/4/5/6	Areas 1/2/3/5/6	Areas 1/2/3/4/6	Areas 1/2/3/4/5
IIC [23]	3.5 ± 0	3.4 ± 0	3.7 ± 0.1	$3.5 {\pm} 0.1$	3.5 ± 0	3.6 ± 0
IIC-S [23]	3.9 ± 0.1	3.9 ± 0.1	4.0 ± 0.1	3.9 ± 0	3.9 ± 0.1	3.9 ± 0
PICIE [7]	5.6 ± 0.2	5.1 ± 0.1	5.0 ± 0.1	5.9 ± 0.3	6.0 ± 0.3	5.5 ± 0.2
PICIE-S [7]	6.9 ± 0.3	6.9 ± 0.7	6.9 ± 0.8	8.1 ± 0.4	8.4 ± 0.3	6.7 ± 0.9
GrowSP (Ours)	16.9 ±0.6	17.8 ±0.6	16.4 ± 0.5	16.1 ±0.6	17.1 ±0.8	15.3±0.3

ScanNet \rightarrow S3DIS:

test on \rightarrow	Area-1	Area-2	Area-3	Area-4	Area-5	Area-6
IIC [23]	$3.7{\pm}0.5$	$3.8 {\pm} 0.4$	$3.8 {\pm} 0.2$	4.0 ± 0.5	$3.8 {\pm} 0.2$	3.7±0.4
IIC-S [23]	6.7 ± 0.1	5.7 ± 0	6.4 ± 0.2	5.8 ± 0	5.9 ± 0	6.5 ± 0.1
PICIE [7]	13.5 ± 0.1	12.7 ± 0.2	13.4 ± 0.1	12.8 ± 0.1	11.3 ± 0.4	13.1 ± 0.1
PICIE-S [7]	14.7 ± 0.9	13.9 ± 0.8	15.1 ± 0.7	14.7 ± 0.4	14.2 ± 0.3	15.8 ± 0.2
GrowSP (Ours)	28.2±1.4	22.9 ±2.5	31.4 ±1.5	25.2±1.0	28.6 ±2.5	30.6 ±2.0

Learned Semantic Primitives ۲

Primitive #1

Primitive #2

Semantic Classes

Experiments:

• Visualizations:

