

SE-ORNet: Self-Ensembling Orientation-aware Network for Unsupervised Point Cloud Shape Correspondence

Jiacheng Deng^{1*} Chuxin Wang^{1*} Jiahao Lu¹ Jianfeng He¹ Tianzhu Zhang^{1,3} Jiyang Yu² Zhe Zhang³

¹University of Science and Technology of China ²China Academy of Space Technology ³Deep Space Exploration Lab

Task Introduction

a pair of point clouds $2 \times N \times 3$

Output

point-to-point

correspondence

 $N \times N$

Challenges

D Symmetrical Part Mismatching

It is difficult to distinguish the correspondence between *symmetrical* parts with different body *orientations*.

Challenges

Symmetrical Part Mismatching
It is difficult to distinguish the
correspondence between *symmetrical*parts with different body *orientations*.

Noise Interference

Point cloud noise perturbs the spatial coordinates of point cloud and interferes with *local structure modeling*.

Orientation Estimation Module

We design a lightweight **Orientation Estimation Module** that accurately *aligns the orientations* of point cloud pairs to achieve correct matching results of symmetrical parts.

Adversarial Domain Adaptation

OEM learning

Due to *the absence of relative rotation angle of the real samples*, we utilize the relative rotation angle of *the rotation-augmented samples* to guide the OEM learning.

Adversarial Domain Adaptation

D OEM learning

Due to *the absence of relative rotation angle of the real samples*, we utilize the relative rotation angle of *the rotation-augmented samples* to guide the OEM learning.

D To eliminate the domain gap

we use a *discriminator* to identify whether the input features of the classification head are from real samples or not.

Self-Ensembling Framework

Stochastic Transform

We apply *rotation* and *Gaussian noise* on the point clouds for the student network formulated.

Self-Ensembling Framework

Stochastic Transform

We apply *rotation* and *Gaussian noise* on the point clouds for the student network formulated.

□ Teacher & Student Models

Our approach follows *the Mean Teacher paradigm* and inputs the aligned point cloud pairs into the student and teacher models.

Self-Ensembling Framework

- Stochastic Transform
- We apply *rotation* and *Gaussian noise* on the point clouds for the student network formulated.
- □ Teacher & Student Models
- Our approach follows *the Mean Teacher*
- paradigm and inputs the aligned point cloud
- pairs into the student and teacher models.
- Soft label
- We take the output of the teacher model as *soft labels* and design two *consistency losses*.

Qualitative Results

Qualitative Results

Source

Target

GT

Comparison

SHREC

acc ↑

err \downarrow

Input

Method

SURREAL

err↓

acc ↑

Conclusion

We design a lightweight Orientation Estimation Module to align the orientations of point cloud pairs for accurate matching symmetrical parts.

 We unify orientation modeling, point cloud representation and *noise* disturbance into a self-ensembling framework.

SE-ORNet attains state-of-the-art performance on both *human* and *animal* benchmarks.

Conclusion

 We design a lightweight Orientation Estimation Module to align the orientations of point cloud pairs for accurate matching symmetrical parts.

 We unify orientation modeling, point cloud representation and *noise* disturbance into a self-ensembling framework.

SE-ORNet attains state-of-the-art performance on both *human* and *animal* benchmarks.

Conclusion

 We design a lightweight Orientation Estimation Module to align the orientations of point cloud pairs for accurate matching symmetrical parts.

 We unify orientation modeling, point cloud representation and *noise* disturbance into a self-ensembling framework.

 SE-ORNet attains state-of-the-art performance on both human and animal benchmarks. **TUE-PM-117**

Thanks for watching!

paper

code

website

