

DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training

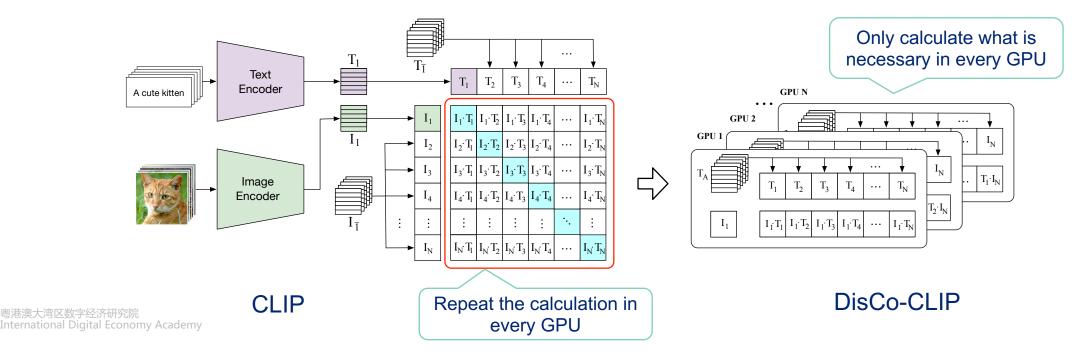
Yihao Chen, Xianbiao Qi, Jianan Wang, Lei Zhang International Digital Economy Academy (IDEA)

Paper Tag: THU-PM-195

The world needs a few good IDEAs

Overview

- We decompose the Contrastive Loss and reduce unnecessary redundant computations. We effectively reducing the computational complexity from O(N²) to O(N²/n).
- Our work is mathematically equivalent to the original contrastive loss computation.
- We have observed that larger batch sizes are highly effective for contrastive learning.



irlea

Train CLIP more efficiently !

- Enable training with large batch size for better performance.
- > Enable training with limited GPU resources.

DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training idea

• The original CLIP contrastive loss function:

$$\mathcal{L}_{d} = \mathcal{L}_{1}(\mathbf{I}_{A}, \mathbf{T}_{A}) + \mathcal{L}_{2}(\mathbf{T}_{A}, \mathbf{I}_{A})$$

$$Image-to-Text \\ Contrastive Loss$$

$$Text-to-Image \\ Contrastive Loss$$

Where I_A and T_A denote **all** image and text features.

> Each GPU calculates the full $I_A \times T_A$ similarity matrix for contrastive loss computation, causing huge computation waste.

► We split I_A and T_A as below: $I_A = [I_n, I_{\overline{n}}],$ $T_A = [T_n, T_{\overline{n}}]$ Where I T are image and text for

Where I_n , T_n are image and text features on the *n*-th GPU, and I_n and T_n denote the collection of features on other GPUs.

>Then the \mathcal{L}_d can be decomposed and rewritten as below:

$$\mathcal{L}_d = \mathcal{L}_1(\mathbf{I}_n, \mathbf{T}_A) + \mathcal{L}_1(\mathbf{I}_{\overline{n}}, \mathbf{T}_A) + \mathcal{L}_2(\mathbf{T}_n, \mathbf{I}_A) + \mathcal{L}_2(\mathbf{T}_{\overline{n}}, \mathbf{I}_A)$$

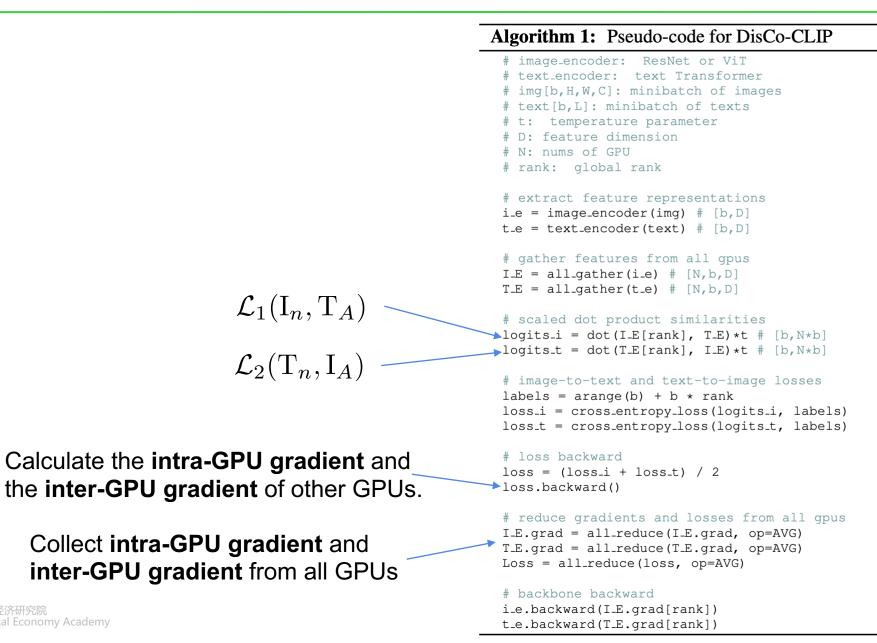
DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training idea

≻It is clear that $\frac{\partial \mathcal{L}_1(I_{\overline{n}}, T_A)}{\partial I_n}$ and $\frac{\partial \mathcal{L}_2(T_{\overline{n}}, I_A)}{\partial T_n}$ do not include gradients. We can decompose the gradients $\frac{\partial \mathcal{L}_d}{\partial I_m}$ and $\frac{\partial \mathcal{L}}{\partial T_c}$ as below : $\frac{\partial \mathcal{L}_d}{\partial \mathbf{I}_n} = \frac{\partial \mathcal{L}_1(\mathbf{I}_n, \mathbf{T}_A)}{\partial \mathbf{I}_n} + \frac{\partial \mathcal{L}_2(\mathbf{T}_n, \mathbf{I}_A)}{\partial \mathbf{I}_n} + \frac{\partial \mathcal{L}_2(\mathbf{T}_{\overline{n}}, \mathbf{I}_A)}{\partial \mathbf{I}_n}$ $\frac{\partial \mathcal{L}_d}{\partial \mathbf{T}_n} = \frac{\partial \mathcal{L}_1(\mathbf{I}_n, \mathbf{T}_A)}{\partial \mathbf{T}_n} + \frac{\partial \mathcal{L}_2(\mathbf{T}_n, \mathbf{I}_A)}{\partial \mathbf{T}_n} + \frac{\partial \mathcal{L}_1(\mathbf{I}_{\overline{n}}, \mathbf{T}_A)}{\partial \mathbf{T}_n}$ inter-GPU gradient intra-GPU gradient

DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training idea

- For intra-GPU gradient on the *n*-th GPU, we only need to calculate $\mathcal{L}_1(I_n, T_A)$ and $\mathcal{L}_2(T_n, I_A)$.
- For inter-GPU gradient on the *n*-th GPU, It would have already been calculated as intra-GPU gradient on other GPUs.
- ➢ In order to obtain → $\frac{\partial \mathcal{L}_d}{\partial I_n}$ and $\frac{\partial \mathcal{L}_d}{\partial T_1}$, we use the All_Reduce operation to perform gradient communication and to collect all gradients with respect to I_n and T_n.

Pseudo-code



Methods	GPUs	BS	Memory	
CLIP	64× A100 40GB	32,768	27.4GB	
CLIP	64× A100 40GB	65,536	OOM	
DisCo-CLIP	64× A100 40GB	32,768	16.5GB	
DisCo-CLIP	64× A100 40GB	196,608	38.1GB	
DisCo-CLIP	8 × A100 40GB	32,768	36.9GB	

Table 3. Memory consumption of CLIP and DisCo-CLIP under different settings. "OOM" means out of memory.

Model	Data Sets	Epochs	Steps	Batch Size	INet [7]	INet-v2 [32]	INet-R [15]	INet-S [40]
CLIP [27]	CLIP WIT 400M	32	$\approx 400 \text{ K}$	32,768	63.3	56.0	69.4	42.3
OpenCLIP [16, 34]	LAION-400M	32	$\approx 400 \; \mathrm{K}$	32,768	62.9	55.1	73.4	49.4
DisCo-CLIP	LAION-400M*	32	$\approx 400 \; \mathrm{K}$	32,768	63.2	55.2	73.4	50.6
DisCo-CLIP	LAION-400M*	32	pprox 200 K	65,536	64.3	56.2	73.8	51.7

Table 7. Comparison of DisCo-CLIP with vanilla CLIP and re-implemented CLIP by LAION group. We report top-1 zero-shot classification accuracy (%) on several data sets. All models are based on ViT-B/32. Our LAION-400M* is a 400M subset of LAION-2B. Training resource: 64 A100 40GB GPUs.

Conclusion

- Disco-CLIP is mathematically equivalent to the original contrastive loss computation.
- DisCo-CLIP can enable a much larger batch size for contrastive learning compared to CLIP, using the same GPU resource.

THANK YOU

中国深圳市福田区市花路5号 长富金茂大厦1号楼3901&57层,邮编518045

Room 3901 and 57/F, Building 1, Chang Fu Jin Mao Tower, 5 Shihua Road, Futian District, Shenzhen, China, 518045 86-755-61610106 (3901) 86-755-83219017 (57楼)

www.idea.edu.cn