

WED-AM-242

Distilling Cross-Temporal Contexts for Continuous Sign Language Recognition

Leming Guo¹ Wanli Xue^{1*} Qing Guo^{2*} Bo Liu³ Kaihua Zhang⁴ Tiantian Yuan⁵ Shengyong Chen¹ ¹ School of Computer Science and Engineering, Tianjin University of Technology, ² Centre for Frontier AI Research (CFAR), A*STAR, Singapore, ³ Walmart Global Tech, Sunnyvale, CA, USA, ⁴ School of Computer and Software, Nanjing University of Information Science and Technology, ⁵ Technical College for the Deaf, Tianjin University of Technology

Motivation and Contribution

• Motivation:

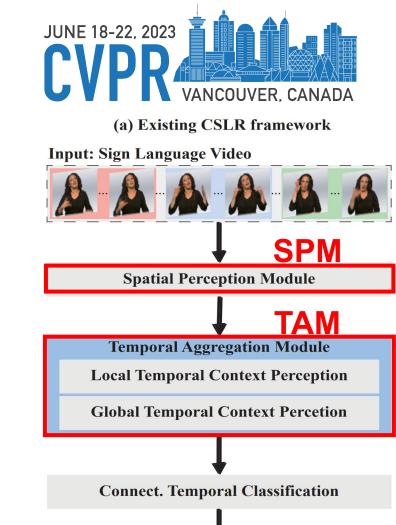
- The spatial perception module tends to be undertrained.
- However, we have no idea about the desired temporal aggregation module.

• Contribution:

- We extensively study the limitation and desirable properties of the temporal aggregation module and find it should be a shallow one and have high temporal aggregation capability.
- We propose the cross-temporal context aggregation (CTCA) that a shallow temporal aggregation module has capable of incorporating local-global temporal contexts and the linguistic prior.

> The SOTA framework of CSLR

- Spatial Perception Module (SPM):
 - Spatial feature extraction.
- Temporal Aggregation Module (TAM):
 - Local-global temporal feature extraction, which is crucial to recognition performance.
 - It includes the local temporal perception module (1D-TCNs), and the global temporal perception module (BLSTM).
- Sequence prediction:
 - Connectionist temporal classification (CTC) function.



Given Annotation: __ON__; JETZT; WETTER; WIE-AUSSEHEN; MORGEN; SAMSTAG; ZWEITE; APRIL; __OFF__; __ON__; ZEIGEN-BILDSCHIRM; __OFF

APRIL

JETZT ··· WETTER ···

Output: Gloss Predictions

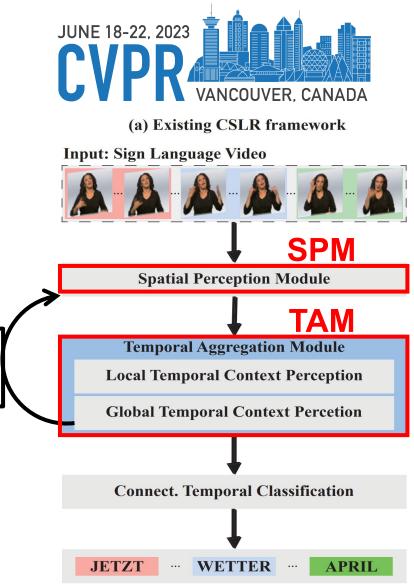
Motivation

• The spatial perception module tends to be undertrained due to the easy overfitting temporal aggregation module and the objective function^{[1-3].}

Insufficient feedback information

- What are the effects of the TAM on the SPM?
- What are the properties of the desired TAM?

- 1. Ronglai Zuo and Brian Mak. C²SLR: Consistency-enhanced continuous sign language recognition. In CVPR, 2022.
- 2. Aiming Hao, Yuecong Min, and Xilin Chen. Self-mutual distillation learning for continuous sign language recognition. In ICCV, 2021.
- 3. Junfu Pu, Wengang Zhou, and Houqiang Li. Iterative alignment network for continuous sign language recognition. In CVPR, 2019.

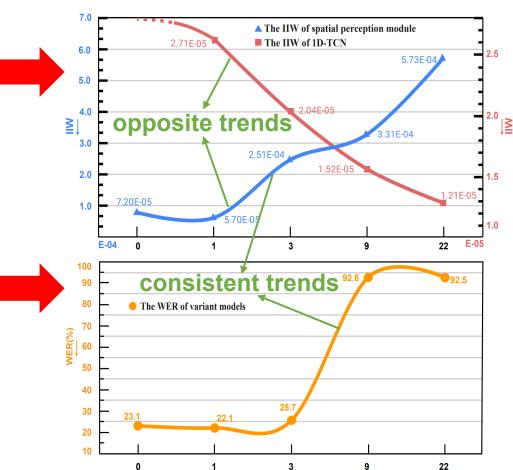


Output: Gloss Predictions

Given Annotation: __ON__; JETZT; WETTER; WIE-AUSSEHEN; MORGEN; SAMSTAG; ZWEITE; APRIL; __OFF__; __ON__; ZEIGEN-BILDSCHIRM; __OFF__

Empirical Studies and Analysis

- Model Generalizability Metric:
 - IIW (the compression of information stored in weights)^[1].
- Observations:
 - The effects of chain depth on the capability of SPM and TAM have completely opposite trends.
 - SPM: has higher effects on the final prediction.
- TAM desired properties:
 - SPM desires a shallow TAM.
 - TAM desires a deeper architecture.



1. Zifeng Wang, Shao-Lun Huang, Ercan Engin Kuruoglu, Ji-meng Sun, Xi Chen, and Yefeng Zheng. Pac-bayes information bottleneck. In ICLR, 2022.

> The conflict caused by shallow TAM

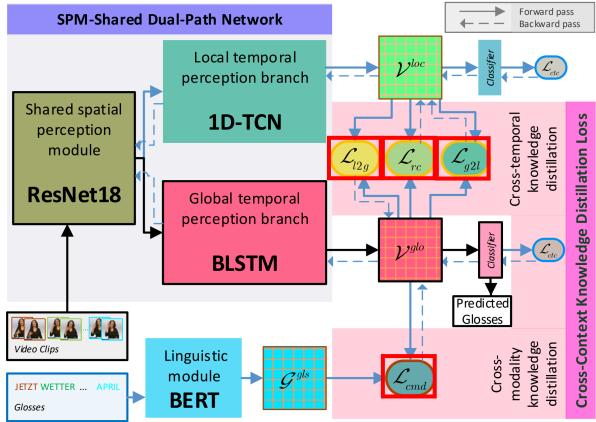
- Advantage:
 - Shallow TAM allows more thorough training of the spatial perception module.
- Disadvantage:
 - However, a shallow TAM cannot well capture both local and global temporal context information.

Cross-Temporal Context Aggregation (CTCA)

Forward pass SPM-Shared Dual-Path Network Backward pass SPM-Shared Dual-Path Network (SDPN): Local temporal designed for a shallow TAM allows more perception branch Shared spatial thorough training of the SPM. **1D-TCN** Los perception oss-tempor kn ow led ge distillation module Distillation **ResNet18 Global temporal** Cross-Context Knowledge Distillation perception branch **Cross-Context Knowledge** (CCKD): enables the global perception **BLSTM** module to achieve local-global temporal Predicted Glosses perception and be more discriminative. kn ow led ge distillation Video Clins modality Linguistic Crossmodule JETZT WETTER ... BERT Glosses

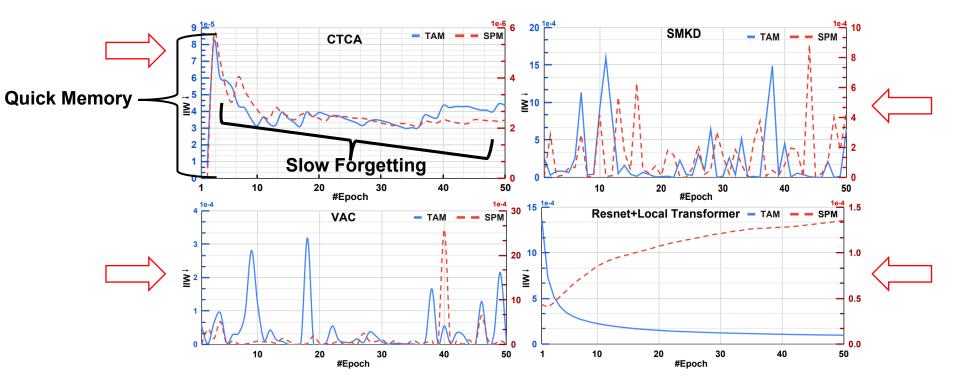
Cross-Temporal Context Aggregation (CTCA)

- Cross-Context Knowledge Distillation:
- Cross-temporal knowledge distillation:
 - Local temporal context guidance loss: encourages V^{glo} to learn sign-wise context maintained in V^{loc} .
 - Global temporal context guidance loss: evolves distilling correlation among co-occurring signs to V^{loc} .
 - Reconstruction loss: reinforces the above crosstemporal context distillations.
- Cross-modality knowledge distillation: encourages V^{glo} to learn the inter-gloss discrimination indirectly.



Generalizability of SPM and TAM

• "Quick Memory - Slow Forgetting" ^[1,2]



N. Tishby and N. Zaslavsky, "Deep learning and the information bottleneck principle," 2015 IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 2015
Zifeng Wang, Shao-Lun Huang, Ercan Engin Kuruoglu, Ji-meng Sun, Xi Chen, and Yefeng Zheng. Pac-bayes information bottleneck. In ICLR, 2022.

Comparison with state-of-the-arts

Table 1. Comparison with state-of-the-art methods on the RWTH-2014 dataset. (WER (%) the lower is the better).

Methods	Dev		Test		
Methods	del/ins	WER	del/ins	WER	
DNF	7.8/3.5	23.8	7.8/3.4	24.4	
FCN	-	23.7	-	23.9	
VAC	7.9/2.5	21.2	8.4/2.6	22.3	
CMA	7.3/2.7	21.3	7.3/2.4	21.9	
SMKD	6.8/2.5	20.8	6.3/2.3	21.0	
C ² SLR	-	20.5	-	20.4	
TLP	6.3/2.8	19.7	6.1/2.9	20.8	
RadialCTC	6.5/2.7	19.4	6.1/2.6	20.2	
CTCA(Ours)	6.2/2.9	19.5	6.1/2.6	20.1	

Table 2. Comparison with state-of-the-art methods on the RWTH-2014T dataset. (WER (%) the lower is the better).

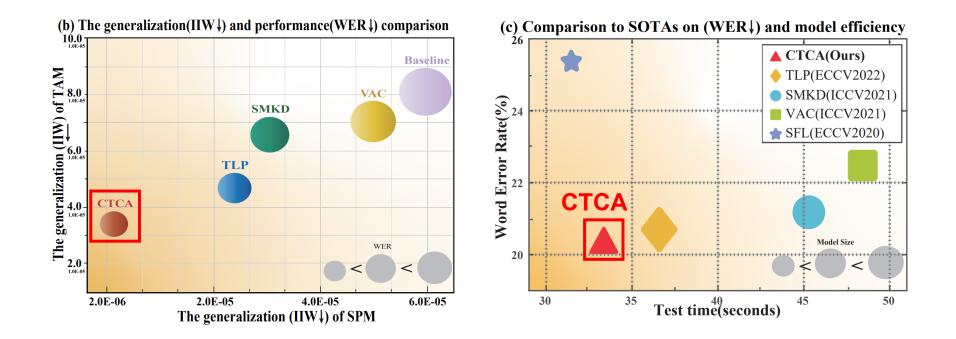
Methods	WER		
Methods	Dev	Test	
SLT	24.6	24.5	
CNN+LSTM+HMM	22.1	24.1	
BN-TIN+Transf	22.7	23.9	
V-L Mapper	21.9	22.5	
SMKD	20.8	22.4	
C ² SLR	20.2	20.4	
TLP	19.4	21.2	
CTCA(Ours)	19.3	20.3	

Table 3. Comparison with state-of-the-art methods on the CSL-Daily dataset. (WER (%) the lower is the better).

Methods	Dev		Test	
Methods	del/ins	WER	del/ins	WER
LS-HAN	14.6/5.7	39.0	14.8/5.0	39.4
SLT(Gloss+Text)	10.3/4.4	33.1	9.6/4.1	32.0
FCN	12.8/4.0	33.2	12.6/3.7	32.5
BN-TIN+Transf	13.9/3.4	33.6	13.5/3.0	33.1
TIN+Iterative	12.8/3.3	32.8	12.5/2.7	32.4
CTCA(Ours)	9.2/2.5	31.3	8.1/2.3	29.4

Comparison with state-of-the-arts

- Better Generalizability, Smaller Parameter size
- Higher Performance, Faster Inference



Ablation Study

Table 5. Ablation study on cross-context knowledge distillation loss on the RWTH-2014.

Method	\mathcal{L}_{l2g}	\mathcal{L}_{ctd} \mathcal{L}_{g2l}	\mathcal{L}_{rc}	\mathcal{L}_{cmd}	Dev	Test
Baseline	-	-	-	-	21.8	22.1
Vanilla	-	-	-	-	21.7	21.9
SDPN A	\checkmark	-	-	-	21.0	21.1
SDPN A- $I(.;)$	\checkmark	-	-	-	21.3	21.5
SDPN B	-	\checkmark	-	-	20.8	20.7
SDPN C	\checkmark	\checkmark	-	-	20.4	20.6
SDPN D	\checkmark	\checkmark	\checkmark	-	20.0	20.4
SDPN D- $\omega(.;)$	\checkmark	\checkmark	\checkmark	-	20.2	20.6
SDPN E	-	-	-	\checkmark	21.3	21.0
СТСА	\checkmark	\checkmark	\checkmark	\checkmark	19.5	20.1

Table 6. Comparison of different knowledge fusion schemes on the RWTH-2014. "Wasserstein" is the Wasserstein distance.

Methods	Knowledge fusion	Dev	Test
	-	21.7	21.8
	Vanilla distillation	21.6	21.6
	Wasserstein	21.6	21.5
SDPN	JMMD	21.3	21.3
	CKD	21.3	21.5
	CTCA (\mathcal{L}_{l2g})	21.0	21.1
	concatenation	22.7	23.6
	point-wise addition	21.2	22.3
	attention	22.2	22.6

Ablation Study

Table 7. Performance comparison of local temporal perception module with distinct temporal window widths on the RWTH-2014. Ft and Ft(d) correspond to the 1D temporal convolution layer with the kernel of t and dilation of d, respectively.

Method	variants	windows	Dev	Test
	F3-F3-F3	7*2	19.5	20.1
	F3(1)-F3(2)	7*2	19.8	20.3
1D-TCN	F5-F5	9*2	20.6	20.6
	F5-F5-F5	13*2	19.9	20.6
	F7-F7	13*2	20.1	20.3

Table 8. Comparison of CTCA with distinct global temporal perception modules (GTPM) on the RWTH-2014.

Method	variants	Dev	Test
GTPM-branch	BLSTM	19.5	20.1
	Dilated blocks	22.2	22.6
	Transformer	28.7	28.9
	Transformer+BLSTM	24.4	24.1

Thanks for your listening!