

PanoSwin: A Pano-Style Swin Transformer for Panorama Understanding

Zhixin LingZhen XingXiangdong ZhouManliang CaoGuichun ZhouSchool of Computer Science, Fudan University{20212010005, zxing20, xdzhou, 17110240029, 19110240014}@fudan.edu.cn

1. Background

2. Related Work: SphereNet

https://blog.csdn.net/u014546828

Strength: Project nearby pixels to a tangent plane, so regular CNNs can be adopted. Weakness: Low parallelism, heavy computation overhead.

2. Related Work: Spherical Transformer

Strength: Resolve spatial distortion and discontinuity. Weakness: Imperfect projection; unfeasible to planar images.

3. Our method: Overview of PanoSwin

1. Side *boundary discontinuity* can be overcome by removing the attention masks.

2. a. => b. : our pano-style shift windowing scheme overcomes polar *boundary discontinuity*.

3. a. => c. : Pitch Attention lets a distorted window to "see" its original appearance to resolve *spacial distortion*.

3. Our method: A pano-style shift windowing scheme

Figure 2. Pano-style/original shift windowing scheme comparison. The arrowed line in orange shows each conversion step.

Pano-style Shift Windowing scheme (PSW) consists of three steps:

- 1. Horizontally shift the image to enable the left/right side continuity.
- 2. Split the image in half and rotate the right half by 180° counterclockwise to enable the north pole continuity.
- 3. Vertically shift the image to enable the south pole continuity.

3. Our method: Pitch Attention

Pitch Attention module (PA) consists of three steps:

- 1. Rotate the pitch of the panorama by 90°.
- 2. Sample a new window in the rotated panorama for each original window.
- 3. Perform window attention between original and new windows.

3. Our method: Panoramic Rotation

(2)

Sph(P) gives the Cartesian coordinate for a point P. we can explain the function R in a formula:

$$v' = 2\operatorname{asin}(\frac{1}{2}||\operatorname{Sph}(P) - \operatorname{Sph}(P_1)||_2) - 0.5\pi,$$

$$P_a \hat{\otimes} P_b: \qquad \operatorname{Sph}(P_a) \otimes \operatorname{Sph}(P_b), \quad (2)$$

$$u' = \operatorname{Angle}(P \hat{\otimes} P_1, P_0 \hat{\otimes} P_1, (P_0 \hat{\otimes} P_1) \otimes P_1),$$

3. Our method: Two-stage Learning Paradigm

Algorithm 1: two-stage learning paradigm.

Input: a downstream task loss \mathcal{L}_{DS} ; a randomly initialied PanoSwin model \mathcal{P} . **Output:** A trained PanoSwin model.

- 1 $\mathcal{A}^{plan} \leftarrow$ a set of planar augmentation methods, *e.g.*, random resizing, cropping and rotation;
- 2 $\mathcal{A}^{pano} \leftarrow$ a set of pano-compatible augmentation methods, *e.g.*, random panoramic rotation, flipping, color jittering;
- 3 Define train(model, loss, augs) as a function that trains model by optimizing loss and enables augmentation approaches specified by augs;

4
$$\mathcal{T} \leftarrow train(model = \mathcal{P}_s, loss = \mathcal{L}_{DS}, augs = \mathcal{A}^{plan} \cup \mathcal{A}^{pano});$$

5 $S \leftarrow T$; fix(T); $fix(\alpha_{i,j} \text{ of } S)$; $S \leftarrow train(model = S_p, loss = \mathcal{L}_{DS} + \mathcal{L}_{KP}, augs = \mathcal{A}^{pano})$; 6 return S

$$\mathcal{L}_{KP} = \frac{1}{\sum_{i}^{N} w_{i}} \sum_{i}^{N} w_{i} ||A(\mathcal{S}(x))^{(i)} - \mathcal{T}_{s}(x)^{(i)}||_{2}^{2}, \text{ where } w_{i} = \cos^{2}(v_{i})\cos^{2}(\frac{1}{2}u_{i})$$

Note that PanoSwin is divised to be compatible with planar images, so common knowledge can be easily transferred from planar images to panoramas via a two-stage learning paradigm and a KP loss.

4. Results: Qualitative Comparison

SPH-Cifar10 classification

No.	Backbone	acc↑	para.
C 1	SpherePHD [16]	59.20	57k
C2	SphericalTransformer [2]	58.21	60k
C3	SGCN [34]	60.72	60k
C4	S2CNN [4]	10.00	58k
C5	SwinT13 [19]	60.46	67k
C6	PanoSwinT12	62.24	66k
C7	SwinT [19]	72.64	28M
C 8	PanoSwinT92	74.50	28M
C9	PanoSwinT	74.84	30M
C10	PanoSwinT ⁺	75.01	30M

360Indoor Object detection

No.	Backbone	mAP@0.5↑	para.
I1	R50 [11] + COCO	33.1	72M
I2	SwinT [19] + COCO	33.8	45M
I3	PanoSwinT92 + COCO	35.6	45M
I4	R50 [11]	20.6	72M
15	R50 [11] + SC [5]	21.1	72M
I6	SwinT [19]	24.0	45M
I7	PanoSwinT92	28.0	45M
I 8	PanoSwinT	28.6	47M
I9	PanoSwinT ⁺	29.4	47M

Inference Time

	PST	PST _s	SwinT	KTN [24]	PST8	SN
para.	30M	30M	28M	294M	191k	196k
CPU↓	1.207	1.018	0.982	5.136	0.186	0.682
GPU↓	0.042	0.015	0.010	3.842	0.021	0.025

4. Results: Qualitative Comparison

Please notice the *spatial distortion* and *boundary discontinuity*

Thanks!