

Highlight Paper Poster Number: 242 Tag: THU-PM-242

CVT-SLR: Contrastive Visual-Textual Transformation for Sign Language Recognition with Variational Alignment

Jiangbin Zheng¹, Yile Wang^{1,2}, Cheng Tan¹, Siyuan Li¹, Ge Wang¹, Jun Xia¹, Yidong Chen³, Stan Z. Li^{1,*}

¹AI Lab, Research Center for Industries of the Future, Westlake University ²Institute for AI Industry Research (AIR), Tsinghua University ³School of Informatics, Xiamen University

Github: https://github.com/binbinjiang/CVT-SLR

Sign Language Recognition (SLR): Convert Sign Language into Glosses

Sign Language Glosses

SLR is a weakly supervised task due to lack of large-scale available sign datasets

CVT-SLR Pipeline

Main Results

Groups	Models	Dev (%)		Test (%)		Cues
		DEL/INS	WER	DEL/INS	WER	
Group 1	SubUNet [9]	14.6/4.0	40.8	14.3/4.0	40.7	video
	Staged-Opt [9]	13.7/7.3	39.4	12.2/7.5	38.7	video
	Align-iOpt [33]	12.6/2.6	37.1	13.0/2.5	36.7	video
	DPD+TEM [47]	9.5/3.2	35.6	9.3/3.1	34.5	video
	Re-Sign [24]	-	27.1	-	26.8	video
	SFL [29]	7.9/6.5	26.2	7.5/6.3	26.8	video
	DNF [11]	7.8/3.5	23.8	7.8/3.4	24.4	video
	FCN [8]	-	23.7	-	23.9	video
	VAC [28]	7.9/2.5	21.2	8.4/2.6	22.3	video
	CMA [32]	7.3/2.7	21.3	7.3/2.4	21.9	video
	SFL [29]	10.3/4.1	24.9	10.4/3.6	25.3	video
	VL-SLT [7]	-	21.9	-	22.5	video
	SMKD [15]	6.8/2.5	<u>20.8</u>	6.3/2.3	<u>21.0</u>	video
Group 2	DNF [11]	7.3/3.3	23.1	6.7/3.3	22.9	video+optical flow
	STMC [48]	7.7/3.4	21.1	7.4/2.6	20.7	video+hand+face+pose
	C^2 SLR [50]	-	<u>20.5</u>	-	<u>20.4</u>	video+keypoints
Group 3	Ours ₁ (<i>w/o</i> VAE+Contra)	7.1/3.0	21.1	7.3/2.9	21.4	video
	$Ours_2$ (<i>w</i> / VAE)	6.5/2.4	20.2	6.3/2.2	20.3	video
	Ours ₃ (<i>w</i> / Contra)	6.7/2.7	20.4	6.4/2.5	20.7	video
	Ours ₄ (<i>w</i> / VAE+Contra)	6.4/2.6	19.8	6.1/2.3	20.1	video

Performance comparison on PHOENIX-2014 dataset.

Introduction

(a) An advanced single-cue SLR framework with explicit cross-modal alignment;(b) Our proposed single-cue SLR framework with explicit cross-modal alignment and implicit autoencoder alignment.

Methods

Methods

Methods

Experiments

Groups	Models	Dev (%)		Test (%)		Cues
		DEL/INS	WER	DEL/INS	WER	
Group 1	SubUNet [9]	14.6/4.0	40.8	14.3/4.0	40.7	video
	Staged-Opt [9]	13.7/7.3	39.4	12.2/7.5	38.7	video
	Align-iOpt [33]	12.6/2.6	37.1	13.0/2.5	36.7	video
	DPD+TEM [47]	9.5/3.2	35.6	9.3/3.1	34.5	video
	Re-Sign [24]	-	27.1	-	26.8	video
	SFL [29]	7.9/6.5	26.2	7.5/6.3	26.8	video
	DNF [11]	7.8/3.5	23.8	7.8/3.4	24.4	video
	FCN [8]	-	23.7	-	23.9	video
	VAC [28]	7.9/2.5	21.2	8.4/2.6	22.3	video
	CMA [32]	7.3/2.7	21.3	7.3/2.4	21.9	video
	SFL [29]	10.3/4.1	24.9	10.4/3.6	25.3	video
	VL-SLT [7]	-	21.9	-	22.5	video
	SMKD [15]	6.8/2.5	<u>20.8</u>	6.3/2.3	<u>21.0</u>	video
Group 2	DNF [11]	7.3/3.3	23.1	6.7/3.3	22.9	video+optical flow
	STMC [48]	7.7/3.4	21.1	7.4/2.6	20.7	video+hand+face+pose
	C^2 SLR [50]	-	<u>20.5</u>	-	<u>20.4</u>	video+keypoints
Group 3	Ours ₁ (<i>w/o</i> VAE+Contra)	7.1/3.0	21.1	7.3/2.9	21.4	video
	$Ours_2$ (<i>w</i> / VAE)	6.5/2.4	20.2	6.3/2.2	20.3	video
	Ours ₃ (<i>w</i> / Contra)	6.7/2.7	20.4	6.4/2.5	20.7	video
	Ours ₄ (<i>w</i> / VAE+Contra)	6.4/2.6	19.8	6.1/2.3	20.1	video

Table 1. Performance comparison (%) on PHOENIX-14 dataset. DEL/INS: deletion error and insertion error.The best results and SOTA baseline for each group are marked as bold and underlined.

Experiments

Groups	Models	W	ER	Cues
oroups		Dev(%)	Test(%)	
Group 1	SFL [29]	25.1	26.1	video
	CNN+LSTM+HMM [22]	24.5	26.5	video
	SLT [3]	24.9	24.6	video
	FCN [8]	23.3	25.1	video
	SMKD [15]	20.8	22.4	video
Group 2	CNN+LSTM+HMM [22]	24.5	25.4	video+mouth
	CNN+LSTM+HMM [22]	22.1	24.1	video+mouth+hand
	SLT [3]	24.6	24.5	video+text
	STMC [48]	<u>19.6</u>	21.0	video+hand+face+pose
	C^2 SLR [50]	20.2	20.4	video+keypoints
Group 3	Ours ₁ (<i>w/o</i> VAE+Contra)	21.8	22.0	video
	Ours ₂ (w/ VAE)	20.1	20.4	video
	Ours ₃ (w/ Contra)	21.0	21.5	video
	Ours ₄ (w/ VAE+Contra)	19.4	20.3	video

Table 2. Performance comparison (%) on PHOENIX-14T dataset. The best results and SOTA baseline for each group are marked as bold and underlined, respectively.

Experiments

Visualization

Four examples with cross-modal alignment matrices (left), saliency maps (middle), and generated glosses (right) on the PHOENIX-14 test set.

- A novel visual-textual transformation-based SLR framework is proposed
- New alignment methods are proposed for cross-modal consistency constraints.
- The proposed single-cue SLR framework not only outperforms existing baselines by a large margin.
- The source codes and models are available at: <u>https://github.com/binbinjiang/CVT-SLR</u>

Highlight Paper

CVT-SLR: Contrastive Visual-Textual Transformation for Sign Language Recognition with Variational Alignment

THANKS

