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Overview

Task. Single-image depth prediction.

Key Point.  Given an image with N pixels, fit the conditional 
distribution of depth map by N-dimensional Gaussian.

Advantages.

● The likelihood is more general and encapsulates flavors of popular 
loss functions.

● The formulation could be helpful in broader applications such as 
uncertainty estimation.



Applications. VR/AR, novel view synthesis, robotics, …

Single Image Depth Prediction (SIDP)
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Image Depth

Goal. Predict the depth value for each pixel of input image.



Scale Ambiguity & Regularity
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Observation. Depth values at nearby pixels often have strong correlation. 

The SIDP problem is ill-posed.

❓
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Independent Assumption is Inappropriate
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Each depth value follows an independent Gaussian distribution (given the image).
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N-pixels follow a N-dimensional Gaussian distribution.
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Multivariate Gaussian Distribution



The time complexity reduces from            to                      .

Low-Rank Assumption
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Relation to Popular Loss Function
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(a) Ours (b) L2 Loss (c) SI Loss (d) Gradient Loss



Network Architecture
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Results. NYU Depth V2
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Method Backbone SILog ↓ Abs Rel ↓ RMS ↓        ↑

DPT-Hybrid ViT-B - 0.110 0.357 0.904

AdaBins EffNet-B5+
ViT-mini 10.570 0.103 0.364 0.903

NeWCRFs Swin-L 9.102 0.095 0.331 0.922

Ours Swin-L 8.323 0.087 0.311 0.933



Results. KITTI Benchmark
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Method Backbone SILog ↓ Abs Rel ↓ Sq Rel ↓ iRMS ↓

DORN ResNet-101 11.80 8.93 2.19 13.22

BTS DenseNet-161 11.67 9.04 2.21 12.23

NeWCRFs Swin-L 10.39 8.37 1.83 11.03

Ours Swin-L 9.93 7.99 1.68 10.63



Conclusion
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● A formulation with multivariate Gaussian distribution for depth map is 

introduced.

● The proposed likelihood is more general and encapsulates flavors of 

popular loss functions.

● The formulation could be helpful in broader applications such as 

uncertainty estimation.


