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The self-supervised revolution in NLP has made it to vision

]

[ ]

, [
; T W .
O
= i
' [ ]
.‘ encoder —>» _ |decoder =
||
£ I
e o
4 :
K m
=

]

Masked Autoencoders are Scalable Visual Learners
Kaimeng He et al. (CVPR 2022)



Problem: generative SSL still underperforms when not fine-tuning
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Our aim: incorporate learning higher-level features into masked autoencoders
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How? We add an explicit image-level perceptual penalty to the loss
G — G
L*=||Gd )-T[],+L"

Perceptual loss by feature matching:
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How? We add an explicit image-level perceptual penalty to the loss
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Trick: where § is an adversarial discriminator

Image-level adversarial term

Penalise reconstruction which can be distinguished from real image



How? We add an explicit image-level perceptual penalty to the loss
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Perceptual loss by feature matching:
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Trick: where § is an adversarial discriminator

Image-level adversarial term

AN

Plus from the generative
adversarial toolbox:

« multi-scale gradients

e perceptual path reg.

« adaptive discriminator
augmentation (ADA)

R

Penalise reconstruction which can be distinguished from real image



Results

Not only does this improve decoder reconstruction

StyleGANv2-
ADA-P

MAE MS-SSIM LS-GAN-P MSG-GAN-P

L1 0.25 0.21

IS 6.33 8.01 16.2 32.1 36.8



Results

But also boosts both fine-tuned and few-shot settings for classification
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Results

All whilst being much more data and compute efficient than alternate methods
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Results

And generalises across tasks

ViT-B
Classification (IN1K) Obj Det (MS-COCO) Sem Seg (ADE20K)
Supervised [182.3 [147.9
MoCo v3 [83.2 a7.9
BEIT [m83.2 49.8
MAE [N83.6 e 50.3
StyleGANv2-ADA-P —86.2 —53.5
82 84.5 87 47 50.5 54 47 48 49 50 51

Accuracy mAP Box mIiOU



Poster session:
WED-PM-204

https://github.com/tractableai/perceptual-mae




