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Problem: NonIID Issue in Federated Knowledge Distillation
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◆Federated Knowledge Distillation (FKD): global 

model is obtained by the ensemble distillation of 

multiple local models for a given sample

Local Model 𝑤1 Local Model 𝑤2 Local Model 𝑤𝐾

…

◆ Problem: existing FKD view all local models as equivalent for a given sample, which ignores 

their training data distribution

◆Federated Learning collaboratively trains a model 

from NonIID data across multiple clients



Method: Domain-aware Federated Knowledge Distillation
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◆Domain-aware FKD: takes the NonIID data into account when making distillation for the global model 

➢ Adaptive factor: for any distillation sample, endow each local model with a specific importance factor

➢ Discriminator: based on the generator, train a discriminator for each client to produce the importance factor



Results: Theoretical and Empirical Improvement

◆Theory: upper bound is not related to the degree of NonIID

Our method

Baseline

No items related to NonIID

◆Experiment: highest accuracy among all 

methods
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Federated Learning



Federated Learning has been deployed in a wide range of applications, such as 

medical analysis and intelligent industry

Pervasive Application of Federated Learning



◆Federated Learning: collaboratively train a model from data across multiple clients

FedAvg: Federated Learning with Aggregating Parameters

Parameter  

server

...

FedAvg: Global model is obtained by computing the average of 

parameters of multiple local models



◆ Insight: each local model contains the specific local knowledge in its parameters structure

◆ Limitation: the parameters structure will be broken when they are aggregated into the global model, losing 

the specific local knowledge

◆ Example: two clients with data samples (x<0, y=0) and (x>0,  y=1) respectively. Their parameters may cancel 

out each other when they are aggregated in the server

Limitations of Aggregating Parameters
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◆Federated Knowledge Distillation (FKD): global model is obtained by the ensemble 

distillation of multiple local models for a given sample

◆Existing methods: 

➢ FEDDFUSION: utilize unlabeled training samples as the distillation dataset [1] 

➢ FEDGEN: utilize the generator to produce the unlabeled data samples [2]

➢ FEDFTG: improve the training of generator [3]

Federated Knowledge Distillation
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◆NonIID: data is non-identically and independently distributed (NonIID) across multiple clients

➢ Each local model may make mistakes when the input samples are far from its distribution

Limitations of Existing FKD Methods

◆Limitation: existing FKD methods view all local models as equivalent for a given sample, 

which ignores their training data distribution
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Method: Domain-aware Federated Knowledge Distillation

∗

Prediction Result

◆Domain-aware FKD (DaFKD): taking NonIID into account when making distillation for the global model

➢ Adaptive Importance: for any distillation sample, endow each local model with a specific importance factor
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DaFKD: Identifying Importance with Domain Discriminators

◆Domain Discriminator : identify whether a given sample is close to its local domain

➢ Generator: trained in a FedAvg manner

➢ Discriminator: personalize for each client and not average
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DaFKD: Domain-aware Federated Distillation
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◆ Importance: the discriminator outputs an importance factor for each given distillation sample

◆Ensemble Distillation: all logits are aggregated in a weighted manner with the importance factor as the weight



Partial Parameters Sharing between Discriminator and Target Model

◆Motivation: 

➢ Both the discriminator and the classification model seek to maximize the distinguishability of the samples

➢ Communication cost can be reduced when the discriminator and classification model share partial layers

◆ Partial Parameters Sharing: discriminator and classification model share partial shallow layers



Theoretical Guarantee

◆Theory: the upper loss bound of our method is not related to the degree of NonIID

Our method

Baseline

No items related to NonIID

Two items related to NonIID



Empirical Results

◆Results: highest accuracy among all methods on various datasets and models (improve by up to 6%)



◆Challenge: the data is NonIID in FL settings

◆Problem: existing FKD methods view all local models as equivalent and ignore NonIID

data distributions

Summary
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◆Method: utilize a 

discriminator to identify the 

importance of each local 

model for given distillation 

sample

◆Result: theoretical guarantee 

and empirical improvements
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Haozhao Wang, Yichen Li, Wenchao Xu, Ruixuan Li, 
Yufeng Zhan and Zhigang Zeng
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