THU-AM-374

DaFKD : Domain-aware Federated Knowledge Distillation

Haozhao Wang¹, Yichen Li^{1,3}, Wenchao Xu⁴, Ruixuan Li^{1*}, Yufeng Zhan⁵ and Zhigang Zeng²

¹School of Computer Science and Technology, ²School of Artificial Intelligence and Automation, Huazhong University of Science and Technology}, Wuhan, China

³Soochow University, Suzhou, China, and ⁴The Hong Kong Polytechnic University, Hong Kong

⁵Beijing Institute of Technology, Beijing, China

Problem: NonIID Issue in Federated Knowledge Distillation

- Federated Learning collaboratively trains a model from NonIID data across multiple clients
- Federated Knowledge Distillation (FKD): global model is obtained by the ensemble distillation of multiple local models for a given sample

Loss L_{KD}

Distillation

Problem: existing FKD view all local models as equivalent for a given sample, which ignores their training data distribution

Method: Domain-aware Federated Knowledge Distillation

Domain-aware FKD: takes the NonIID data into account when making distillation for the global model

- > <u>Adaptive factor</u>: for any distillation sample, endow each local model with a specific importance factor
- > <u>Discriminator</u>: based on the generator, train a discriminator for each client to produce the importance factor

Results: Theoretical and Empirical Improvement

Federated Learning

I. Background and Challenge
II. Related Works and Limitations
III.Methodology and Theory
IV.Experimental Results
V. Conclusion

Pervasive Application of Federated Learning

Federated Learning has been deployed in a wide range of applications, such as medical analysis and intelligent industry

FedAvg: Federated Learning with Aggregating Parameters

• Federated Learning: collaboratively train a model from data across multiple clients

FedAvg: <u>Global model</u> is obtained by <u>computing the average</u> of <u>parameters</u> of multiple local models

Limitations of Aggregating Parameters

- Insight: each local model contains the specific local knowledge in its parameters structure
- Limitation: the parameters structure will be broken when they are aggregated into the global model, losing the specific local knowledge
- Example: two clients with data samples (x<0, y=0) and (x>0, y=1) respectively. Their parameters may *cancel* out each other when they are aggregated in the server

Federated Knowledge Distillation

- Federated Knowledge Distillation (FKD): global model is obtained by the ensemble distillation of multiple local models for a given sample
- **•** Existing methods:
 - FEDDFUSION: utilize unlabeled training samples as the distillation dataset [1]
 - ➢ FEDGEN: utilize the generator to produce the unlabeled data samples [2]
 - ➢ FEDFTG: improve the training of generator [3]

Loss L_{KD}

Distillation

[1] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion in fed- erated learning. Advances in Neural Information Processing Systems, 33:2351–2363, 2020

[2] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous federated learning. In International Conference on Machine Learning, pages 12878–12889. PMLR, 2021

[3] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling- Yu Duan. Fine-tuning global model via data-free knowledge distillation for non-iid federated learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 10164–10173

Limitations of Existing FKD Methods

- NonIID: data is non-identically and independently distributed (NonIID) across multiple clients
 Each local model may make mistakes when the input samples are far from its distribution
- Limitation: existing FKD methods view all local models as equivalent for a given sample, which ignores their training data distribution

Federated Learning

I. Background and Challenge
II. Related Works and Limitations
III.Methodology and Theory
IV.Experimental Results
V. Conclusion

Method: Domain-aware Federated Knowledge Distillation

Domain-aware FKD (DaFKD): taking NonIID into account when making distillation for the global model
 Adaptive Importance: for any distillation sample, endow each local model with a specific importance factor

DaFKD: Identifying Importance with Domain Discriminators

Domain Discriminator : identify whether a given sample is close to its local domain

- **Generator**: *trained in a FedAvg manner*
- > **Discriminator**: personalize for each client and not average

DaFKD: Domain-aware Federated Distillation

Importance: the discriminator outputs an importance factor for each given distillation sample
 Ensemble Distillation: all logits are aggregated in a weighted manner with the importance factor as the weight

◆ Motivation:

- *Both the discriminator and the classification model seek to maximize the distinguishability of the samples*
- Communication cost can be reduced when the discriminator and classification model share partial layers
- Partial Parameters Sharing: discriminator and classification model share partial shallow layers

Theoretical Guarantee

◆ **Theory**: the upper loss bound of our method is not related to the degree of NonIID

◆ **Results**: highest accuracy among all methods on various datasets and models (improve by up to 6%)

Dataset	Setting	FEDAVG	FEDGEN	FEDFTG	DaFKD
MNIST, E = 20	$\alpha = 0.05$	69.11 ± 1.39	81.06 ± 1.09	80.95±1.06	82.33±0.44
	$\alpha = 0.1$	95.16 ± 0.79	$94.98 {\pm}~0.47$	$94.43 {\pm} 0.49$	95.56±0.41
	$\alpha = 1$	98.11 ± 0.14	$96.39 {\pm}~0.90$	$98.47 {\pm} 0.21$	98.96±0.38
SVHN, E = 20	$\alpha = 0.05$	33.01 ± 0.12	$47.36 {\pm}~0.42$	48.69 ± 1.87	51.14±0.16
	$\alpha = 0.1$	53.54 ± 0.21	$60.03 {\pm}~1.12$	$63.75 {\pm} 0.11$	$72.80{\pm}0.11$
	$\alpha = 10$	$81.44 {\pm}~0.01$	$82.91 {\pm}~0.73$	$83.49 {\pm} 1.32$	$87.31 {\pm} 0.85$
FASHION	$\alpha = 0.05$	30.01 ± 0.54	$36.59 {\pm}~0.98$	$34.84{\pm}0.77$	37.85 ± 0.24
MNIST,	$\alpha = 0.1$	$67.97 {\pm}~0.03$	$67.29 {\pm}~2.05$	$67.25 {\pm} 0.14$	$70.81{\pm}0.21$
E = 20	$\alpha = 10$	$82.37 {\pm}~0.82$	$81.57{\pm}1.96$	$81.96{\pm}1.86$	$83.37{\pm}0.06$
EMNIST, E = 40	$\alpha = 0.05$	67.28 ± 0.14	$68.95 {\pm} 0.88$	$67.08 {\pm} 0.97$	$67.64{\pm}1.86$
	$\alpha = 0.1$	69.13 ± 0.23	$72.15{\pm}\ 2.04$	$72.91{\pm}1.87$	74.96±0.91
	$\alpha = 10$	81.35 ± 1.03	$82.02{\pm}1.19$	82.65 ± 1.04	84.60±1.86

Summary

Challenge: the data is NonIID in FL settings

Local Model w_1

Loss L_{KD}

Global Model w

=

Distillation

 S_K

+ ... + Local Model W_K

52

Local Model w_2

+

Result: theoretical guarantee and empirical improvements

Thank You

Haozhao Wang, Yichen Li, Wenchao Xu, Ruixuan Li, Yufeng Zhan and Zhigang Zeng