

Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild

IEEE/CVF CVPR'2023 Poster ID # TUE-PM-164 Vancouver, BC, Canada, June 18-22, 2023

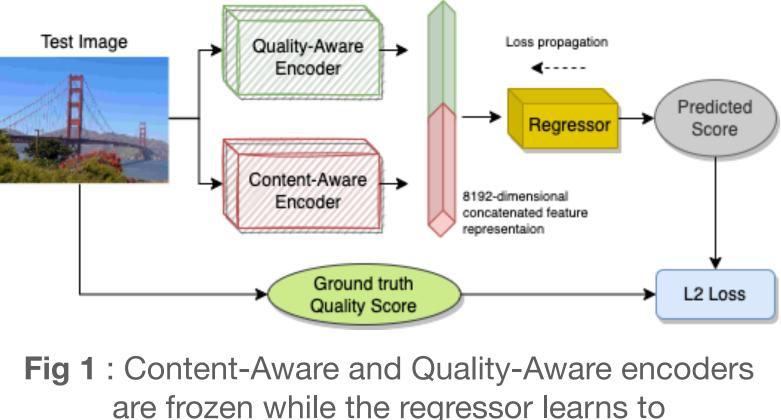
Avinab Saha* avinab.saha@utexas.edu

Laboratory of Image and Video Engineering, The University of Texas at Austin

Alan C. Bovik bovik@ece.utexas.edu

Overview of Re-IQA

- Perceptual Image Quality Assessment (IQA) affects billions of internet and social media users daily
- We propose a *Mixture of Experts* approach to independently train two encoders to learn image features relating to
 - High Level Image Content (Content Aware Encoder)
 - Low Level Technical Image Quality (Quality Aware Encoder)
- Encoders are trained in an *Unsupervised setting* lacksquare
- We call this framework to train the encoders **Re-IQA**
- For **IQA** in-the-Wild, complementary low & high level image representations are used to *train a regressor* to map *image representations* to ground truth Mean Opinion Scores (MOS)



are frozen while the regressor learns to map image representations to quality predictions

No Reference IQA : Challenges

- *interplay* among the various kinds of *distortions*
- content related *perceptual processes like masking*

(a) JPEG Compressed : 1

(b) JPEG Compressed : 2

No-Reference IQA for *Images in the Wild* presents challenges due to the complex

Due intricate nature of human visual system, *image content affects quality perception*

Image distortion perception is highly *content dependent*, and is heavily affected by

(c) Motion Blur - Camera Shake Fig 2: Exemplar Synthetically and "In-the-wild" distorted pictures

(d) Overlaid Film Grain/ Noise

No Reference IQA : Challenges

- Also well-known, perceived quality does not correlate well with image metadata like
 - Image resolution, file size, color profile, compression ratio etc
- Unlike Full-Reference IQA, that has access to the pristine source image, No-Reference IQA (NR-IQA) lacks both the information about source image & applied distortions.

(a) JPEG Compressed : 1

(b) JPEG Compressed : 2

(c) Motion Blur - Camera Shake Fig 2: Exemplar Synthetically and "In-the-wild" distorted pictures

(d) Overlaid Film Grain/ Noise

Our Method

- in image classification task
- We engineer **Re-IQA** to learn **content** and **quality-aware** image representations for NR-IQA on *real, authentically distorted* pictures
- *Mixture of Experts* approach is used to train two encoders to learn image features relating to
 - **Expert 1** : *High Level Image Content* (Content Aware Encoder)
 - **Expert 2**: Low Level Technical Image Quality (Quality Aware Encoder)
- The representations from both encoders are utilized to train a regressor that maps *image representations* to ground truth *Mean* Opinion Scores (MOS)

• Our work draws inspiration from *Momentum Contrastive Learning* methods' success

Key Contributions

- Unsupervised representation learning framework for low-level image quality that are complementary to high-level image-content representations
 - Mixture of Content and Quality Features achieve competitive image quality predictions compared to existing SoTA methods
- Proposed a novel *Image Augmentation* and *Intra-Pair Image Swapping* scheme to enable learning of **low-level image quality** representations
 - Dynamic nature of Image Augmentation prevents learning of discrete distortion classes enforcing learning of perceptually relevant image-quality features

Re-IQA : Content Aware

- database is used as the **Content-Aware Module**
- High Level Working of MoCo-v2 :
 - Two augmented crops of same image are labelled as positive pairs
 - Crops from different images are labelled as *negative pairs*
 - Positive & negative pairs are used in the InfoNCE loss to train the networks
- **Issue :** Two augmentations of even the same image crop have varying Image quality
 - MoCo-V2 framework needs to *modified* for learning *quality-aware* representations

Unsupervised pre-trained MoCo-v2* Resnet-50 backbone trained on ImageNet

Re-IQA : Quality Aware

- MoCo-v2 framework is modified using our proposed Image Augmentation and Intra-Pair Image Swapping scheme
- We also use the **3 hypothesis** inspired by our knowledge of distortion perception in the HVS
 - *H1*: For two overlapping crops from the same image
 - higher overlap => more similar quality features
 - H2: crops with different content => dissimilar quality features
 - H3: same crop, different distortion => dissimilar quality features
- Augmentation bank comprises of 25 distortion methods, each realized at 5 levels of severity

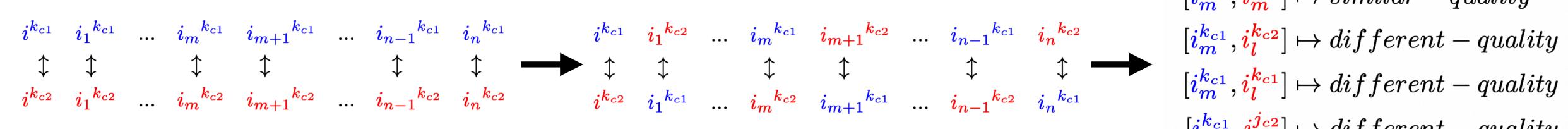
Re-IQA : Quality Aware (Contd.)

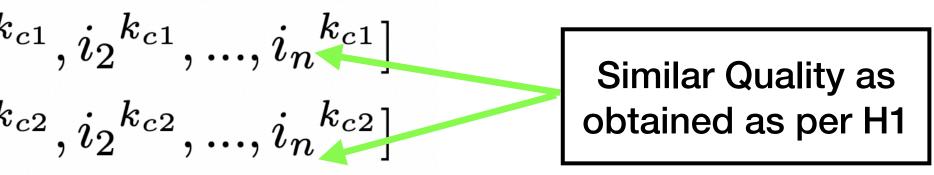
Using n unique distortion augmentations from the bank on two overlapping crops (c_1, c_2) of the training image (i^k) , we define a chunk of images as :

$$chunk^{k_{c1}} = [i^{k_{c1}}, i_1^k]^k$$

 $chunk^{k_{c2}} = [i^{k_{c2}}, i_1^k]^k$

The Intra-Pair Image Swapping scheme then generates the following pairs

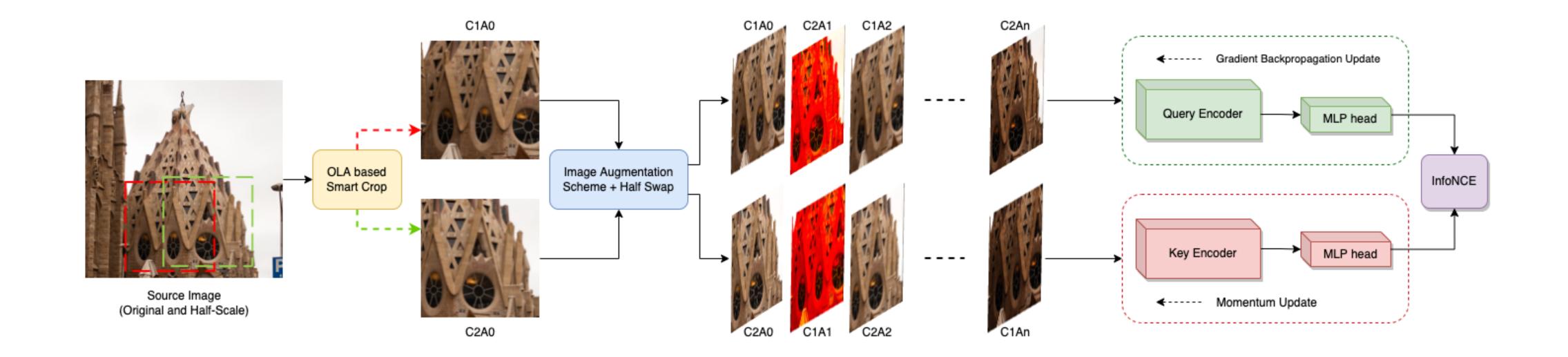




 $[i_m^{k_{c1}}, i_m^{k_{c2}}] \mapsto similar - quality$ $[i_m^{k_{c1}}, i_l^{j_{c2}}] \mapsto different - quality$

Re-IQA : Quality Aware (Contd.)

- We train the **Query** encoder by back-propagating the **InfoNCE** loss of the batch calculated from the output features obtained using the paired inputs
- The weights of the Key encoder are updated using the momentum update method



Re-IQA : Quality Aware (Contd.)

- We conducted extensive ablation studies to select the hyper-parameters :
 - Number of Augmentations (n_{aug}) used to generated a chunk
 - Patch Size : Size of Crops used in training Re-IQA Quality-Aware module
 - Overlapping Area Bound between crops from a same image
- Based on our results, the following configurations were chosen :
 - *n*_{aug} : 11 , Patch Size : 160 , OLA Bound : 10-30%
- Performance comparison among various configurations can be found in *Table 1* (*Main Paper*)

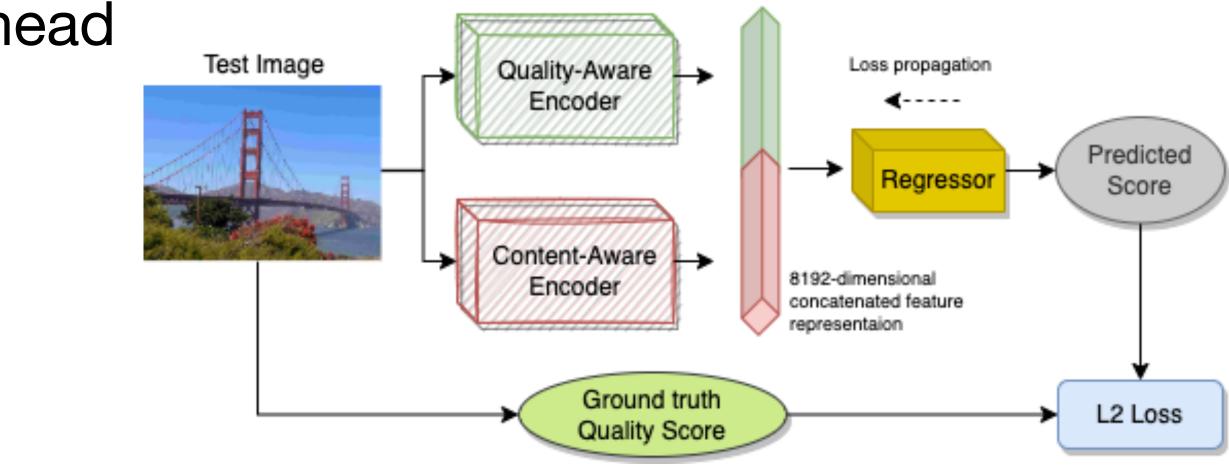
Training Dataset

- For Content-aware model: ImageNet-1K (~ 1.28 million images)
- For Quality-aware model we use a combination of authentic and synthetic distorted images from the following databases:
 - KADIS¹: We use the 140,000 pristine images in the dataset
 - AVA²: 225,000 authentically distorted images
 - COCO³: 330,000 authentically distorted images
 - CERTH-Blur⁴: 2450 authentically distorted images •
 - VOC⁵: 33,000 authentically distorted images
 - [1] Hanhe L, et al. Kadid-10k: A large-scale artificially distorted iqa database. IEEE QoMEX 2019
 - [2] Naila M, et al. Ava: A large-scale database for aesthetic visual analysis.CVPR 2012
 - [3] Tsung-Yi L, et al. Microsoft coco: Common objects in context. ECCV 2014
 - [4] Eftichia M, et al. No-reference blur assessment in natural images using fourier transform and spatial pyramids. ICIP 2014
 - [5] Everingham M, et al. The pascal visual object classes (voc) challenge. IJCV 2010

IQA Regression

- Image is passed through the *two f* image representations
- The concatenated image representations are fed to a Linear Regressor to predict a quality score
- The predicted quality score is compared with the ground truth human opinion score (MOS) to train the Regressor head

Image is passed through the two frozen pre-trained encoders to generate



Evaluation Datasets

- UGC-IQA Datasets:
 - KonIQ¹ (10,000), SPAQ² (11,000), CLIVE³ (1162), FLIVE⁴ (40,000)
- Synthetic-IQA Datasets:

[1] Hosu, V., et al., KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment. IEEE TIP 2020 [2] Fang, Y., et al., Perceptual quality assessment of smartphone photography. CVPR 2020 [3] Ghadiyaram, D. et al., Massive online crowdsourced study of subjective and objective picture quality. IEEE TIP 2015 [4] Ying Z., et al., From patches to pictures (PaQ-2-PiQ): Mapping the perceptual space of picture quality. CVPR 2020 [5] Sheikh, H.R., et al., A statistical evaluation of recent full reference image quality assessment algorithms. IEEE TIP 2006 [6] Larson, E.C. et al., Most apparent distortion: full-reference IQA and the role of strategy. Journal of Electronic Imaging 2020 [7] Ponomarenko, N., et al., Color image database TID2013: Peculiarities and preliminary results. IEEE EUVIP 2013. [8] Lin, H., et al., KADID-10k: A large-scale artificially distorted IQA database. IEEE QoMEX 2019

We evaluate our model on both UGC (In-the-Wild) and Synthetic datasets

LIVE-IQA⁵ (779), CSIQ-IQA⁶ (866), TID-2013⁷ (3,000), KADID⁸ (10,125)

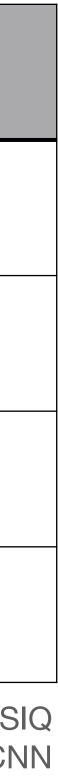
Objective NR-IQA Results

- Checkout Table 2 (Main Paper) for comparison of our proposed meth with various SoTA algorithms
- Our method performs at par with MUSIQ¹, which is built on Transfor
- Our model *performs better* than \$ *methods* on *most datasets*, and competitively similar on the rest.

- [1] Ke, J., et al.. Musiq: Multi-scale image quality transformer. IEEE/CVF ICCV 2021
- [2] Su, S., et al. Blindly assess image quality in the wild guided by a self-adaptive hyper network. CVPR 2020 [3] Madhusudana, P.C., et al. Image quality assessment using contrastive learning. IEEE TIP 2020

or			
or 10d	Method	FLIVE (SRCC ↑)	SPAQ (SRCC ↑)
	HyperIQA ²	0.535	0.916
	CONTRIQUE³	0.580	0.914
rmers	MUSIQ (Transformer based)	0.646	0.917
SoTA	Re-IQA (Content + Quality Experts)	0.645	0.918

Table 1: Comparison of SRCC scores of Re-IQA against MUSIQ (Transformer based approach), Hyper-IQA and CONTRIQUE (CNN based approach) on UGC-IQA datasets

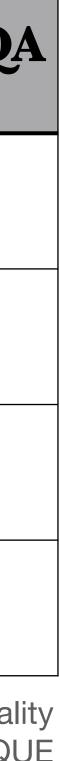


Objective NR-IQA Results

- Our method performs better than when evaluated on Synthetic data
- For some datasets, Quality-only e performs better than Mixture-ofexperts

	Method	LIVE-IQA (SRCC ↑)	CSIQ-IQ (SRCC ↑)
most	HyperIQA	0.962	0.923
asets	CONTRIQUE	0.960	0.942
expert	Re-IQA (Quality Expert only)	0.971	0.944
	Re-IQA (Content + Quality Experts)	0.970	0.947

Table 2: Comparison of SRCC scores of Re-IQA (Content+Quality Experts), Re-IQA (Quality Expert only), Hyper-IQA and CONTRIQUE (CNN based approach) on Synthetic IQA datasets



Cross Database Generalization

- Cross-database generalization isCchallenging NR-IQA problem
 - Common phenomenon that model performance degrades when trained and tested on different datasets
- SRCC Comparison of cross database generalization of Re-IQA with SoTA NR-IQA methods shown below

Training	Testing Database	NR-IQA Algorithms			
Database		PQR	HyperIQA	CONTRIQUE	Re-IQA
CLIVE	KonIQ	0.757	0.772	0.676	0.769
KonIQ	CLIVE	0.770	0.785	0.731	0.791
LIVE-IQA	CSIQ-IQA	0.719	0.744	0.823	0.808
CSIQ-IQA	LIVE-IQA	0.922	0.926	0.925	0.929

• Re-IQA has superior cross-database generalizability!

Conclusion

- content and distortion on the overall image quality score
- **Re-engineered** the MoCo-v2 framework for learning **quality-aware** representations to include our proposed *Image Augmentation*, OLA-based smart cropping, and Intra-Pair Swapping scheme
- Results show Re-IQA consistently achieves SoTA performance on eight popular NR-IQA databases
- Lastly, our method is *flexible to encoder architecture designs* and can be extended to other CNN and Transformer based models.

Developed a holistic approach to **NR-IQA** by individually targeting the impact of

